Training.py 6.63 KB
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
# -*- coding: utf-8 -*-
import psycopg2.extras
from datetime import datetime, timedelta
import traceback
import sys
import pandas as pd
import Utils
import logging
import logging.config
import yaml
import os

try:
import cPickle as pickle
except:
import pickle
import PredictionKorvesis as pdm


MYDIR = os.path.dirname(os.path.realpath(__file__))
LOGGING_CONF_FILE = os.path.join(MYDIR, "logging.yml")


def read_log_conf(yaml_file):
with open(yaml_file) as f:
logging.config.dictConfig(yaml.safe_load(f))

read_log_conf(LOGGING_CONF_FILE)
logger = logging.getLogger("mltd-offline")


def connect_time_db(
time_db_host,
time_db_port,
time_db_username,
time_db_password,
time_db_ssl,
time_db_dbname,
):
conn = psycopg2.connect(
dbname=time_db_dbname,
user=time_db_username,
password=time_db_password,
host=time_db_host,
)
cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
return cursor


def fetch_training_data(
time_db_cursor,
explicit_security_incidents_dates,
hours_before,
asset_id,
adt_table,
xlsiem_table,
od_table,
):

# fetch reported incidents from ADT table
time_db_cursor.execute(
"SELECT time FROM " + adt_table + " where asset_id = '" + asset_id + "'"
)
major_security_incidents_dates = time_db_cursor.fetchall()

# append to the fetched incident the explicit incidents
if len(explicit_security_incidents_dates) != 0:
for date_str in explicit_security_incidents_dates:
major_security_incidents_dates.append(
[datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%SZ"),"target_incident"]
)
major_security_incidents_dates = sorted(major_security_incidents_dates)

# removing incidents that are hours_before close to each other
remove_candidates = []
for i in range(len(major_security_incidents_dates) - 1, 0, -1):
cur_row = major_security_incidents_dates[i]
pre_row = major_security_incidents_dates[i - 1]
if cur_row[0] <= pre_row[0] + timedelta(hours=Utils.strtime_to_hours(hours_before)):
remove_candidates.append(cur_row)
if len(remove_candidates) > 0:
major_security_incidents_dates.remove(remove_candidates)

dataset_dates = []
dataset_values = []

for msi_date in major_security_incidents_dates:
time_db_cursor.execute(
"SELECT time, event_alarm_id FROM "
+ xlsiem_table
+ " where time > TIMESTAMP '"
+ msi_date[0].strftime("%Y-%m-%dT%H:%M:%SZ")
+ "' - interval '"
+ str(hours_before)
+ " hours' and asset_id = '"
+ asset_id
+ "'"
)
xlsiem_security_incidents = time_db_cursor.fetchall()

od_security_incidents = []
# time_db_cursor.execute(
# "SELECT time, event_alarm_id FROM "
# + od_table
# + " where time > TIMESTAMP '"
# + msi_date[0].strftime("%Y-%m-%dT%H:%M:%SZ")
# + "' - interval '"
# + str(hours_before)
# + " hours' and asset_id = '"
# + asset_id
# + "'"
# )
# od_security_incidents = time_db_cursor.fetchall()

fetched_security_incidents = sorted(xlsiem_security_incidents+od_security_incidents)

if len(fetched_security_incidents) > 0:
for sec_incident in fetched_security_incidents:
dataset_dates.append(sec_incident[0].strftime("%Y-%m-%dT%H:%M:%SZ"))
dataset_values.append(sec_incident[1])
dataset_dates.append(msi_date[0].strftime("%Y-%m-%dT%H:%M:%SZ"))
dataset_values.append("target_event")
return (dataset_dates, dataset_values)


def save_to_bin_file(data, filename):
with open(filename, "ab") as f:
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)


def do_the_training(
trainID,
time_db_host,
time_db_port,
time_db_username,
time_db_password,
time_db_ssl,
time_db_dbname,
asset_id,
adt_table,
xlsiem_table,
od_table,
mp_thres_X,
mp_thres_Y,
mp_thres_Z,
pat_length,
s,
midpoint,
hours_before,
time_segments,
explicit_security_incidents_dates,
artificial_events_generation=False,
rre=False,
rfe=False,
kofe=False,
mil_over=False,
fs=False,
):
try:
logger.info("Training process started")
time_db_cursor = connect_time_db(
time_db_host,
time_db_port,
time_db_username,
time_db_password,
time_db_ssl,
time_db_dbname,
)

dataset_dates, dataset_values = fetch_training_data(
time_db_cursor,
explicit_security_incidents_dates,
hours_before,
asset_id,
adt_table,
xlsiem_table,
od_table,
)

target_event_id = "target_event"
dataset = pd.DataFrame(
{"Timestamps": dataset_dates, "Event_id": dataset_values}
)
logger.info("serializing pattern length")
save_to_bin_file(pat_length, "train_" + str(trainID) + ".dat")

logger.info("serializing weak bins")
save_to_bin_file({}, "train_" + str(trainID) + ".dat")

logger.info("serializing matrixProfile")
save_to_bin_file({}, "train_" + str(trainID) + ".dat")

logger.info("serializing measurements")
save_to_bin_file(dataset_values, "train_" + str(trainID) + ".dat")

regr, feature_importance = pdm.train_rf_model(
dataset, time_segments, target_event_id, s, midpoint, rre=rre, rfe=rfe, kofe=kofe, mil_over=mil_over, fs=fs,
) # time_segments='H'

logger.info("serializing random forest trained model")
save_to_bin_file(regr, "train_" + str(trainID) + ".dat")

logger.info("serializing random forest feature importance")
save_to_bin_file(feature_importance, "train_" + str(trainID) + ".dat")

logger.info("serializing flag artificial_events_generation")
save_to_bin_file(artificial_events_generation, "train_" + str(trainID) + ".dat")

logger.info("Training process finished")
time_db_cursor.close()
return 0
except Exception as err:
print(err)
traceback.print_exc(file=sys.stdout)
return 5


# failure_dates = ["2014-05-07T00:01:02Z","2014-07-06T00:01:07Z","2014-10-03T00:01:00Z","2014-12-21T00:00:59Z","2015-02-14T00:00:59Z","2015-04-15T00:01:07Z","2015-07-01T00:00:45Z","2015-08-24T00:00:55Z","2016-04-24T00:00:50Z"]
# do_the_training(2,'localhost',8086,'Axoom3','artificial_events',0.5,1,0.5,6,0.7,2,4,failure_dates)