Blame view
MLTD/src/Training.py
6.63 KB
0d8c0f816 initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# -*- coding: utf-8 -*- import psycopg2.extras from datetime import datetime, timedelta import traceback import sys import pandas as pd import Utils import logging import logging.config import yaml import os try: import cPickle as pickle except: import pickle import PredictionKorvesis as pdm MYDIR = os.path.dirname(os.path.realpath(__file__)) LOGGING_CONF_FILE = os.path.join(MYDIR, "logging.yml") def read_log_conf(yaml_file): with open(yaml_file) as f: logging.config.dictConfig(yaml.safe_load(f)) read_log_conf(LOGGING_CONF_FILE) logger = logging.getLogger("mltd-offline") def connect_time_db( time_db_host, time_db_port, time_db_username, time_db_password, time_db_ssl, time_db_dbname, ): conn = psycopg2.connect( dbname=time_db_dbname, user=time_db_username, password=time_db_password, host=time_db_host, ) cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) return cursor def fetch_training_data( time_db_cursor, explicit_security_incidents_dates, hours_before, asset_id, adt_table, xlsiem_table, od_table, ): # fetch reported incidents from ADT table time_db_cursor.execute( "SELECT time FROM " + adt_table + " where asset_id = '" + asset_id + "'" ) major_security_incidents_dates = time_db_cursor.fetchall() # append to the fetched incident the explicit incidents if len(explicit_security_incidents_dates) != 0: for date_str in explicit_security_incidents_dates: major_security_incidents_dates.append( [datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%SZ"),"target_incident"] ) major_security_incidents_dates = sorted(major_security_incidents_dates) # removing incidents that are hours_before close to each other remove_candidates = [] for i in range(len(major_security_incidents_dates) - 1, 0, -1): cur_row = major_security_incidents_dates[i] pre_row = major_security_incidents_dates[i - 1] if cur_row[0] <= pre_row[0] + timedelta(hours=Utils.strtime_to_hours(hours_before)): remove_candidates.append(cur_row) if len(remove_candidates) > 0: major_security_incidents_dates.remove(remove_candidates) dataset_dates = [] dataset_values = [] for msi_date in major_security_incidents_dates: time_db_cursor.execute( "SELECT time, event_alarm_id FROM " + xlsiem_table + " where time > TIMESTAMP '" + msi_date[0].strftime("%Y-%m-%dT%H:%M:%SZ") + "' - interval '" + str(hours_before) + " hours' and asset_id = '" + asset_id + "'" ) xlsiem_security_incidents = time_db_cursor.fetchall() od_security_incidents = [] # time_db_cursor.execute( # "SELECT time, event_alarm_id FROM " # + od_table # + " where time > TIMESTAMP '" # + msi_date[0].strftime("%Y-%m-%dT%H:%M:%SZ") # + "' - interval '" # + str(hours_before) # + " hours' and asset_id = '" # + asset_id # + "'" # ) # od_security_incidents = time_db_cursor.fetchall() fetched_security_incidents = sorted(xlsiem_security_incidents+od_security_incidents) if len(fetched_security_incidents) > 0: for sec_incident in fetched_security_incidents: dataset_dates.append(sec_incident[0].strftime("%Y-%m-%dT%H:%M:%SZ")) dataset_values.append(sec_incident[1]) dataset_dates.append(msi_date[0].strftime("%Y-%m-%dT%H:%M:%SZ")) dataset_values.append("target_event") return (dataset_dates, dataset_values) def save_to_bin_file(data, filename): with open(filename, "ab") as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) def do_the_training( trainID, time_db_host, time_db_port, time_db_username, time_db_password, time_db_ssl, time_db_dbname, asset_id, adt_table, xlsiem_table, od_table, mp_thres_X, mp_thres_Y, mp_thres_Z, pat_length, s, midpoint, hours_before, time_segments, explicit_security_incidents_dates, artificial_events_generation=False, rre=False, rfe=False, kofe=False, mil_over=False, fs=False, ): try: logger.info("Training process started") time_db_cursor = connect_time_db( time_db_host, time_db_port, time_db_username, time_db_password, time_db_ssl, time_db_dbname, ) dataset_dates, dataset_values = fetch_training_data( time_db_cursor, explicit_security_incidents_dates, hours_before, asset_id, adt_table, xlsiem_table, od_table, ) target_event_id = "target_event" dataset = pd.DataFrame( {"Timestamps": dataset_dates, "Event_id": dataset_values} ) logger.info("serializing pattern length") save_to_bin_file(pat_length, "train_" + str(trainID) + ".dat") logger.info("serializing weak bins") save_to_bin_file({}, "train_" + str(trainID) + ".dat") logger.info("serializing matrixProfile") save_to_bin_file({}, "train_" + str(trainID) + ".dat") logger.info("serializing measurements") save_to_bin_file(dataset_values, "train_" + str(trainID) + ".dat") regr, feature_importance = pdm.train_rf_model( dataset, time_segments, target_event_id, s, midpoint, rre=rre, rfe=rfe, kofe=kofe, mil_over=mil_over, fs=fs, ) # time_segments='H' logger.info("serializing random forest trained model") save_to_bin_file(regr, "train_" + str(trainID) + ".dat") logger.info("serializing random forest feature importance") save_to_bin_file(feature_importance, "train_" + str(trainID) + ".dat") logger.info("serializing flag artificial_events_generation") save_to_bin_file(artificial_events_generation, "train_" + str(trainID) + ".dat") logger.info("Training process finished") time_db_cursor.close() return 0 except Exception as err: print(err) traceback.print_exc(file=sys.stdout) return 5 # failure_dates = ["2014-05-07T00:01:02Z","2014-07-06T00:01:07Z","2014-10-03T00:01:00Z","2014-12-21T00:00:59Z","2015-02-14T00:00:59Z","2015-04-15T00:01:07Z","2015-07-01T00:00:45Z","2015-08-24T00:00:55Z","2016-04-24T00:00:50Z"] # do_the_training(2,'localhost',8086,'Axoom3','artificial_events',0.5,1,0.5,6,0.7,2,4,failure_dates) |