Blame view
AIRBUS_Predictor_v3.r
22.2 KB
4eb80aaaa init commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
suppressMessages(library(CORElearn)) suppressMessages(library(dplyr)) suppressMessages(library(plyr)) suppressMessages(library(data.table)) suppressMessages(library(randomForest)) suppressMessages(library(ggplot2)) suppressMessages(library(grid)) suppressMessages(library(argparser)) suppressMessages(library(stringr)) export_ds_for_spm <- function(target_event,episodes_list,output){ if (file.exists(output)) { file.remove(output) } #output for HirateYamana for(ep_index in (1:length(episodes_list))){ ep = episodes_list[[ep_index]][ , !(names(episodes_list[[ep_index]]) %in% c("Timestamps"))] ep_list = list() for(i in (1:nrow(ep))){ matches = which(ep[i,] %in% c(1)) if(length(matches) == 0){ next } line=paste(matches,collapse=" ") ep_list[i] = line } if(length(ep_list) == 0){ next } ep_list[length(ep_list)+1] = target_event episode = "" for(ep_lli in (1:length(ep_list))){ if(length(ep_list[[ep_lli]]) > 0){ index = paste(paste("<",ep_lli,sep=""),">",sep="") if(episode == ""){ episode = paste(index,ep_list[[ep_lli]],sep=" ") } else { episode = paste(episode,paste(index,ep_list[[ep_lli]],sep=" "),sep=" -1 ") } } } write(paste(episode,"-1 -2"),file=output,append=TRUE) } } remove_rare_events <- function(ds,target_event_frequency_proportion_rare){ if(!csv){ print("~~~~~~~APPLYING PROPREPROCESSING: REMOVE RARE EVENTS~~~~~~~") } a = table(ds$Event_id) target_event_frequency = a[names(a)==target_event] rare_events = as.integer(names(a[a < target_event_frequency*target_event_frequency_proportion_rare])) return(ds[!(ds$Event_id %in% rare_events),]) } remove_frequent_events <- function(ds,max_event_frequency_proportion_frequent){ if(!csv){ print("~~~~~~~APPLYING PROPREPROCESSING: REMOVE FREQUENT EVENTS~~~~~~~") } a = table(ds$Event_id) max_freq = sort(a,decreasing = TRUE)[[1]] frequent_events = as.integer(names(a[a > max_freq*max_event_frequency_proportion_frequent])) return(ds[!(ds$Event_id %in% frequent_events),]) } keep_only_first_occureness <- function(episodes_list){ if(!csv){ print("~~~~~~~APPLYING PROPREPROCESSING: KEEP ONLY FIRST OCCURENESS~~~~~~~") } #for every episode in the episodes_list for(ep_index in (1:length(episodes_list))){ ep = episodes_list[[ep_index]] #For every segment of each episode starting from the end up to the second segment. #We need to keep only the 1st occurness of consequtive events, hence starting from the end is the easy way. for(i in (nrow(ep):2)){ #as we deal with binary vectors, to find the indeces that both vectors have "1" we sum them and check for "2"s in the result matches = which((ep[i,]+ep[i-1,]) %in% c(2)) #replace the 1s with 0s in the matching positions of the segment that is closer to the end of the episode ep[i,][c(matches)] = 0 } episodes_list[[ep_index]] = ep } return(episodes_list) } mil_text <- function(milw,F_thres,episodes_list,b_length){ if(!csv){ print("~~~~~~~APPLYING PROPREPROCESSING: MULTI INSTANCE LEARNING~~~~~~~") } window_df = data.frame(matrix(ncol = b_length+2, nrow = 0)) #for every episode in the episodes_list for(ep_index in (1:length(episodes_list))){ ep = episodes_list[[ep_index]] new_ep = data.frame(matrix(ncol = b_length+2, nrow = 0)) i = 1 while(i <= nrow(ep)){ new_ep = rbind(new_ep,ep[i,]) if(ep[i,][b_length+2] >= F_thres && nrow(window_df) < milw){ window_df = rbind(window_df,ep[i,]) } if(nrow(window_df) == milw || i == nrow(ep)){ mean = colMeans(window_df) mean[mean > 0] = 1 mf = data.frame(as.list(mean)) mf[1] = ep[i,][1] mf[b_length+2] = ep[i,][b_length+2] #colnames(mf) = colnames(new_ep) new_ep = rbind(new_ep,mf) if(nrow(window_df) > 1){ i = i - (nrow(window_df)-2) } window_df = data.frame(matrix(ncol = b_length+2, nrow = 0)) } i = i + 1 } episodes_list[[ep_index]] = new_ep } return(episodes_list) } mil_image <- function(milw,F_thres,episodes_list,b_length){ if(!csv){ print("~~~~~~~APPLYING PROPREPROCESSING: MULTI INSTANCE LEARNING~~~~~~~") } #for every episode in the episodes_list for(ep_index in (1:length(episodes_list))){ ep = episodes_list[[ep_index]] new_ep = data.frame(matrix(ncol = b_length+2, nrow = 0)) #a data.frame with the vectors that need to be averaged window_df = data.frame(matrix(ncol = b_length+2, nrow = 0)) i = 1 while(i <= nrow(ep)){ #new_ep = rbind(new_ep,ep[i,]) if(nrow(window_df) < milw){ window_df = rbind(window_df,ep[i,]) } if(nrow(window_df) == milw || i == nrow(ep)){ mean = colMeans(window_df) mean[mean > 0] = 1 mf = data.frame(as.list(mean)) mf[1] = ep[i,][1] mf[b_length+2] = ep[i,][b_length+2] #colnames(mf) = colnames(new_ep) new_ep = rbind(new_ep,mf) if(window_df[1,][b_length+2] >= F_thres && nrow(window_df) > 1){ i = i - (nrow(window_df)-1) } window_df = data.frame(matrix(ncol = b_length+2, nrow = 0)) } i = i + 1 } episodes_list[[ep_index]] = new_ep } return(episodes_list) } #the Risk function compute_F <- function(s,midpoint,t,ep_length){ #s affects the steepness # s <- 0.9 return(1/(1+exp(s*(ep_length-midpoint-t)))) } #convert event vectors to binary vectors compute_frequency_vectors <- function(aggr_episode_df,b_length,s,midpoint){ freq_aggr_episode_df <- data.frame(matrix(ncol = b_length+2, nrow = 0)) x <- c(c("Timestamps"), c(paste("e_",c(1:b_length),sep = "")), c("Risk_F")) # colnames(bin_aggr_episode_df) <- x for(i in 1:nrow(aggr_episode_df)) { #init a vector with 3405 0s freq_vector = as.vector(integer(b_length)) seg <- aggr_episode_df[i,] #if segment contains the j number, replace the 0 in the bin_vector with 1 for(value in seg$x[[1]]){ freq_vector[[value]] = length(which(seg$x[[1]] == value)) } #add a new line to the bin_aggr_epissode_df #we use a matrix holding the elements of the new_data.frame as matrix is able to store variable of different data types F = compute_F(s,midpoint,i-1,nrow(aggr_episode_df)) date = seg$Timeframe[[1]] new_df = data.frame(matrix(c(date, freq_vector,F),nrow=1,ncol=b_length+2)) freq_aggr_episode_df <- rbind(freq_aggr_episode_df,new_df) } # x <- c(c("Timestamps"), c(paste("e_",c(1:3405))), c("Risk_F")) colnames(freq_aggr_episode_df) <- x return(freq_aggr_episode_df) } create_episodes_list <- function(ds,target_event,b_length,s,midpoint){ if(!csv){ print("~~~~~~~CREATING FREQUENCY VECTORS AND BINARIZE THEM~~~~~~~") } #devide in episodes target_event_spotted = FALSE #a list with data.frames for the episodes (each episode one data.frame) episodes_list = list() #data.frame for episodes episode_df <- data.frame(Timestamps=as.POSIXct(character()),Event_id=integer()) #iterate over every line of the original dataset for(i in 1:nrow(ds)) { #get the current row of the ds meas <- ds[i,] #If it is the target event enable the appropriate flag if((meas$Event_id == target_event)){ target_event_spotted = TRUE } #fill the episode data.frame with the events that are between two target events if(meas$Event_id != target_event && target_event_spotted){ episode_df <- rbind(episode_df,data.frame(Timestamps=meas$Timestamps, Event_id=meas$Event_id)) } else if(meas$Event_id == target_event && target_event_spotted && is.data.frame(episode_df) && nrow(episode_df) != 0){ #a second occurness of the target event is spotted, close the episode #target_event_spotted = FALSE #aggregate by day all the events to form the segments inside the episodes aggr_episode_df = aggregate(episode_df[ ,2], FUN=function(x){return(x)}, by=list(Timeframe=cut(as.POSIXct(episode_df$Timestamps, format="%Y-%m-%d"),"day"))) #%Y-%m-%dT%H:%M:%OSZ #binarize the frequncy vector bin_aggr_episode_df = compute_frequency_vectors(aggr_episode_df,b_length,s,midpoint) #Remove event 0, which does not provide any info KOUGKA #bin_aggr_episode_df = bin_aggr_episode_df[ , !(names(bin_aggr_episode_df) %in% c("e_1"))] #add the episode to the episodes_list episodes_list[[length(episodes_list)+1]] = bin_aggr_episode_df #reset episode_df to en empty data.frame episode_df <- data.frame(Timestamps=as.POSIXct(character()),Event_id=integer()) } } return(episodes_list) } preprocess <- function(ds,TEST_DATA,REMOVE_RARE_EVENTS,REMOVE_FREQUENT_EVENTS,KEEP_ONLY_FIRST_OCCURENESS,MULTI_INSTANCE_LEARNING_TEXT,MULTI_INSTANCE_LEARNING_IMAGE,FEATURE_SELECTION,top_features,s,midpoint,b_length,target_event,target_event_frequency_proportion_rare,max_event_frequency_proportion_frequent,w,F_thres){ #Remove events that appear < n times. We consider n = (target event frequency)/2 if(REMOVE_RARE_EVENTS){ ds<-remove_rare_events(ds,target_event_frequency_proportion_rare) } #Remove events that appear < n times. We consider n = (target event frequency)/2 if(REMOVE_FREQUENT_EVENTS){ ds<-remove_frequent_events(ds,max_event_frequency_proportion_frequent) } episodes_list = create_episodes_list(ds,target_event,b_length,s,midpoint) #binarize the vector for(ep_index in (1:length(episodes_list))){ ep = episodes_list[[ep_index]] ep[2:(ncol(ep)-1)][ep[2:(ncol(ep)-1)] > 0] = 1 episodes_list[[ep_index]] = ep } # keep only the first occurness of event in consecutive segments if(KEEP_ONLY_FIRST_OCCURENESS){ episodes_list <- keep_only_first_occureness(episodes_list) } # Multi-instance learning to increase the pattern frequency if(MULTI_INSTANCE_LEARNING_TEXT){ episodes_list <- mil_text(w,F_thres,episodes_list,b_length) } else if(MULTI_INSTANCE_LEARNING_IMAGE){ episodes_list <- mil_image(w,F_thres,episodes_list,b_length) } return(episodes_list) } feature_selection <- function(merged_episodes,top_features){ estReliefF <- attrEval(Risk_F ~ ., merged_episodes, estimator="RReliefFexpRank", ReliefIterations=50) sorted_indeces = order(estReliefF, decreasing = TRUE) merged_episodes = merged_episodes %>% select(sorted_indeces[1:top_features],ncol(merged_episodes)) return(merged_episodes) } read_dataset <- function(path){ dataset = read.table(path, header = TRUE, sep = ",", dec = ".", comment.char = "#") dataset[, 2] <- as.numeric(dataset[, 2]) return(dataset) } eval <- function(train_episodes,test_episodes_list,seed){ set.seed(seed) my.rf = randomForest(Risk_F ~ .,data=train_episodes,importance=TRUE) #varImpPlot(my.rf) false_positives = 0 true_positives = 0 false_negatives = 0 for(ep in test_episodes_list){ ep = ep[ , !(names(ep) %in% c("Timestamps"))] Prediction <- predict(my.rf, ep) ep_legth = length(Prediction) pred_indeces = as.numeric(names(Prediction[Prediction >= acceptance_threshold])) if(length(pred_indeces[pred_indeces < (ep_legth-(max_warning_interval))]) > 0){ false_positives = false_positives + length(pred_indeces[pred_indeces < (ep_legth-(max_warning_interval))]) } if(length(pred_indeces[pred_indeces >= (ep_legth-(max_warning_interval)) & pred_indeces <= (ep_legth-min_warning_interval)]) > 0){ true_positives = true_positives + 1 } else { false_negatives = false_negatives + 1 } } precision = true_positives/(true_positives+false_positives) if((true_positives+false_positives) == 0){ precision = 0 } recall = true_positives/length(test_episodes_list) F1 = 2*((precision*recall)/(precision+recall)) if((precision+recall) == 0){ F1 = 0 } if(!csv){ cat(paste("dataset:",argv$test," true_positives:", true_positives," false_positives:", false_positives," false_negatives:", false_negatives," precision:", precision," recall:", recall," F1:", F1, " ")) } else { cat(paste(argv$test,",",true_positives,",",false_positives,",",false_negatives,",",precision,",",recall,",",F1,",",argv$fet,",",argv$tet,",",argv$rre,",",argv$rfe,",",argv$kofe,",",argv$mili,",",argv$milt,",",argv$fs,",",argv$top,",",argv$rer,",",argv$fer,",",argv$seed,",",argv$steepness,",",argv$pthres,",",argv$milw,",",argv$milthres,",",argv$midpoint,",",argv$minwint,",",argv$maxwint," ",sep="")) } return(my.rf) } plot <- function(test_episodes_list, episode_index, my.rf){ test_episodes = test_episodes_list[[episode_index]][ , !(names(test_episodes_list[[episode_index]]) %in% c("Timestamps"))] Prediction <- predict(my.rf, test_episodes) results = data.frame(Risk_F=test_episodes$Risk_F,num_Prediction=as.numeric(Prediction)) mse = mean((Prediction-test_episodes$Risk_F)^2) chart =ggplot(results,aes((1:nrow(results)))) + # geom_rect(aes(xmin = ceiling(nrow(df_test)/2), xmax = nrow(df_test), ymin = -Inf, ymax = Inf), # fill = "yellow", alpha = 0.003) + geom_line(aes(y = Risk_F, colour = "Actual")) + geom_line(aes(y = num_Prediction, colour="Predicted")) + labs(colour="Lines") + xlab("Segments") + ylab('Risk (F)') + ggtitle("Risk Prediction") + # (RR_KF_2YEARS_PAT08) theme(plot.title = element_text(hjust = 0.5)) + geom_text(aes(label = paste("MSE=",round(mse,3)), x = 20, y = 1), hjust = -2, vjust = 6, color="black", size=4) #add MSE label # Disable clip-area so that the MSE is shown in the plot gt <- ggplot_gtable(ggplot_build(chart)) gt$layout$clip[gt$layout$name == "panel"] <- "off" grid.draw(gt) } p <- arg_parser("Implementation of the AIRBUS Predictor") # Add a positional argument p <- add_argument(p, "id", help="experiment ID") p <- add_argument(p, "train", help="training dataset") p <- add_argument(p, "test", help="test dataset") p <- add_argument(p, "fet", help="different types of the fault events",default=151) p <- add_argument(p, "tet", help="type of the target fault events",default=151) p <- add_argument(p, "--rre", help="remove rare events", default=TRUE) p <- add_argument(p, "--rfe", help="remove frequent events", default=TRUE) p <- add_argument(p, "--kofe", help="keep only first event", default=TRUE) p <- add_argument(p, "--milt", help="MIL as written in the text of the paper", default=TRUE) p <- add_argument(p, "--mili", help="MIL as shonw in the Figure of the paper", default=FALSE) p <- add_argument(p, "--milthres", help="MIL threshold to the sigmoid function for over-sampling", default=0.4) p <- add_argument(p, "--steepness", help="steepness of the sigmoid function", default=0.7) p <- add_argument(p, "--midpoint", help="midpoint of the sigmoid function (in days)", default=11) p <- add_argument(p, "--fs", help="apply feature selection", default=FALSE) p <- add_argument(p, "--top", help="# of features to keep in feature selection", default=200) p <- add_argument(p, "--rer", help="rare events ratio of the target event frequency", default=0.5) p <- add_argument(p, "--fer", help="frequent events ratio of the frequency of the most frequent event", default=0.8) p <- add_argument(p, "--milw", help="MIL window size (in days)", default=6) p <- add_argument(p, "--pthres", help="prediction threshold to the Risk value for a true positive episode", default=0.5) p <- add_argument(p, "--seed", help="seed for RF", default=500) p <- add_argument(p, "--csv", help="output for csv", default=TRUE) p <- add_argument(p, "--spme", help="export datasets for sequential pattern minning", default=FALSE) p <- add_argument(p, "--java", help="the java path", default="/usr/bin/java") p <- add_argument(p, "--python", help="the java path", default="/usr/bin/python") p <- add_argument(p, "--cep", help="the java path", default="/media/thanasis/Storage/ATLANTIS/0_Ensembled_Predictive_Solution_EPS/spm_rules.py") p <- add_argument(p, "--spmf", help="the spmf path", default="/media/thanasis/Storage/ATLANTIS/0_Ensembled_Predictive_Solution_EPS/spmf.jar") p <- add_argument(p, "--conf", help="minimum support (minsup)", default="20%") p <- add_argument(p, "--minti", help="minimum time interval allowed between two succesive itemsets of a sequential pattern", default=1) p <- add_argument(p, "--maxti", help="maximum time interval allowed between two succesive itemsets of a sequential pattern", default=5) p <- add_argument(p, "--minwi", help="minimum time interval allowed between the first itemset and the last itemset of a sequential pattern", default=1) p <- add_argument(p, "--maxwi", help="maximum time interval allowed between the first itemset and the last itemset of a sequential pattern", default=11) p <- add_argument(p, "--minwint", help="min # of days before failure to expect a warning for true positive decision", default=1) p <- add_argument(p, "--maxwint", help="max # of days before failure to expect a warning for true positive decision", default=22) argv = data.frame() if( length(commandArgs(trailingOnly = TRUE)) != 0){ argv <- parse_args(p) } else { argv <- parse_args(p,c(1,"training_dataset_150ft_151vl_1824d_90pc_50ppc_1minbt_5maxbt_1minbpe_2maxbpe_4pl_3minpf_4maxpf_2seed.csv","testing_dataset_150ft_151vl_1824d_90pc_50ppc_1minbt_5maxbt_1minbpe_2maxbpe_4pl_3minpf_4maxpf_2seed.csv",151,151)) } TEST_DATA = FALSE id = argv$id REMOVE_RARE_EVENTS = argv$rre REMOVE_FREQUENT_EVENTS = argv$rfe KEEP_ONLY_FIRST_OCCURENESS = argv$kofe MULTI_INSTANCE_LEARNING_TEXT = argv$milt #MIL as explained in the text MULTI_INSTANCE_LEARNING_IMAGE = argv$mili #MIL as presented in the figure FEATURE_SELECTION = argv$fs top_features = argv$top target_event_frequency_proportion_rare = argv$rer max_event_frequency_proportion_frequent = argv$fer milw = argv$milw F_thres = argv$milthres s = argv$steepness midpoint = argv$midpoint target_event = argv$tet b_length = argv$fet acceptance_threshold = argv$pthres export_spm = argv$spme seed = argv$seed csv = argv$csv max_warning_interval = argv$maxwint min_warning_interval = argv$minwint training_set = read_dataset(argv$train) test_set = read_dataset(argv$test) episodes_list <- preprocess(training_set,TEST_DATA,REMOVE_RARE_EVENTS,REMOVE_FREQUENT_EVENTS,KEEP_ONLY_FIRST_OCCURENESS,MULTI_INSTANCE_LEARNING_TEXT,MULTI_INSTANCE_LEARNING_IMAGE,FEATURE_SELECTION,top_features,s,midpoint,b_length,target_event,target_event_frequency_proportion_rare,max_event_frequency_proportion_frequent,milw,F_thres) #merge episodes merged_episodes = ldply(episodes_list, data.frame) merged_episodes = merged_episodes[ , !(names(merged_episodes) %in% c("Timestamps"))] if(FEATURE_SELECTION){ #remove columns with all values equal to zero merged_episodes = merged_episodes[, colSums(merged_episodes != 0) > 0] merged_episodes = feature_selection(merged_episodes,top_features) } TEST_DATA = TRUE REMOVE_RARE_EVENTS = FALSE REMOVE_FREQUENT_EVENTS = FALSE KEEP_ONLY_FIRST_OCCURENESS = FALSE MULTI_INSTANCE_LEARNING_TEXT = FALSE #MIL as explained in the text MULTI_INSTANCE_LEARNING_IMAGE = FALSE #MIL as presented in the figure FEATURE_SELECTION = FALSE test_episodes_list <- preprocess(test_set,TEST_DATA,REMOVE_RARE_EVENTS,REMOVE_FREQUENT_EVENTS,KEEP_ONLY_FIRST_OCCURENESS,MULTI_INSTANCE_LEARNING_TEXT,MULTI_INSTANCE_LEARNING_IMAGE,FEATURE_SELECTION,top_features,s,midpoint,b_length,target_event,target_event_frequency_proportion_rare,max_event_frequency_proportion_frequent,milw,F_thres) my.rf = eval(merged_episodes,test_episodes_list,seed) # for(s in (0:6)){ # my.rf = eval(merged_episodes,test_episodes_list,seed) # seed = seed + 1 # } # for(ep in 1:length(test_episodes_list)){ # jpeg(paste(ep,'_rplot.jpg')) # plot(test_episodes_list,ep,my.rf) # dev.off() # } if(export_spm){ if(!csv){ print("~~~~~~~SEQUENTIAL PATTERN MINING~~~~~~~") } spm_train_path = gsub(".csv",paste("_spm_",id,".csv",sep=""),argv$train) spm_test_path = gsub(".csv",paste("_spm_",id,".csv",sep=""),argv$test) spm_results_path = gsub(".csv",paste("_results_",id,".csv",sep=""),argv$train) confidence = argv$conf min_dist_seq = argv$minti max_dist_seq = argv$maxti min_dist_first_last = argv$minwi max_dist_first_last = argv$maxwi java_path = argv$java jspmf_path = argv$spmf python_path = argv$python cep_path = argv$cep max_warning_interval = argv$maxwint min_warning_interval = argv$minwint export_ds_for_spm(target_event,episodes_list,spm_train_path) export_ds_for_spm(target_event,test_episodes_list,spm_test_path) if (file.exists(spm_results_path)) { invisible(file.remove(spm_results_path)) } javaOutput <- system(paste(java_path,"-jar",jspmf_path,"run HirateYamana",spm_train_path,spm_results_path,confidence,min_dist_seq,max_dist_seq,min_dist_first_last,max_dist_first_last), intern = TRUE) #print(javaOutput) pythonOutput <- system(paste(python_path,cep_path,spm_results_path,spm_test_path,target_event), intern = TRUE) #print(pythonOutput) true_positives = 0 false_positives = 0 false_negatives = 0 total_failures = 0 d = 0 warnings = list() for(w in pythonOutput){ d = as.integer(str_extract(w, "\\-*\\d+\\.*\\d*")) if(!grepl("Failure",w,fixed=TRUE)){ warnings = c(warnings,d) } else { total_failures = total_failures + 1 if(length(warnings) == 0){ false_negatives = false_negatives + 1 } else { if(length(warnings[warnings < d-max_warning_interval]) > 0){ false_positives = false_positives + length(warnings[warnings < d-max_warning_interval]) } if(length(warnings[warnings >= (d-max_warning_interval)]) > 0 & length(warnings[warnings <= (d-min_warning_interval)]) > 0){ true_positives = true_positives + 1 } else { false_negatives = false_negatives + 1 } } warnings = list() } } precision = true_positives/(true_positives+false_positives) if((true_positives+false_positives) == 0){ precision = 0 } recall = true_positives/total_failures F1 = 2*((precision*recall)/(precision+recall)) if((precision+recall) == 0){ F1 = 0 } if(!csv){ cat(paste("dataset:",argv$test," true_positives:", true_positives," false_positives:", false_positives," false_negatives:", false_negatives," precision:", precision," recall:", recall," F1:", F1, " ")) } else { cat(paste(argv$test,",", true_positives,",", false_positives,",", false_negatives,",", precision,",", recall,",", F1,",",argv$conf,",",argv$minti,",",argv$maxti,",",argv$minwi,",",argv$maxwi,",",argv$minwint,",",argv$maxwint, " ",sep="")) } } |