Blame view
MLTD/src/Utils.py
6.85 KB
0d8c0f816 initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# -*- coding: utf-8 -*- import sqlite3 import re import math import logging import os try: import cPickle as pickle except: import pickle from sqlite3 import Error logger = logging.getLogger(__name__) def create_sqlite_connection(db_file): conn = None try: conn = sqlite3.connect(db_file) except Error as e: logger.exception("Can't connect to SQLite") return conn def select_model_attribute(conn, trainID, attribute): time_seg = "" cur = conn.cursor() cur.execute( "SELECT " + attribute + " FROM models WHERE model_id=?", (int(trainID),) ) rows = cur.fetchone() if rows != None: if len(rows) > 0: time_seg = rows[0] return time_seg def check_pid(pid): """ Check For the existence of a unix pid. """ try: os.kill(pid, 0) except OSError: return False else: return True # def load_data(train_id, train_dir=DEFAULT_TRAIN_DIR, only_aem=False): # filename = "train_" + str(train_id) + ".dat" # train_path = os.path.join(train_dir, filename) # infile = open(train_path, "rb") # weak_bins_mapping = pickle.load(infile) # profile_index = pickle.load(infile) # mp = pickle.load(infile) # train_dataset_values = np.array(pickle.load(infile)) # art_events_dataset = pickle.load(infile) # processed_art_events_dataset = "" # regr = "" # feature_importance = "" # if not only_aem: # processed_art_events_dataset = pickle.load(infile) # regr = pickle.load(infile) # feature_importance = pickle.load(infile) # infile.close() # return ( # weak_bins_mapping, # profile_index, # mp, # train_dataset_values, # art_events_dataset, # processed_art_events_dataset, # regr, # feature_importance, # ) def create_table(conn, create_table_sql): try: c = conn.cursor() c.execute(create_table_sql) except Error as e: print(e) def sigmoid_risk(s, midpoint, t): try: return 1 / (1 + math.exp(s * (t - midpoint))) except OverflowError as ex: logger.warning(f"Timedelta to big: {t}. " f"Returning 0 risk") return 0 def sigmoid_mins(v, s, midpoint, hours_before): if v > 1: logger.error(f"SIGMOID Risk can't be more than one {v}") raise elif v == 1: return 0 elif v == 0: return convert_hours_to_mins(strtime_to_hours(hours_before)) return (math.log(1 / v - 1) / s) + midpoint def convert_hours_to_mins(hours): return hours * 60 def strtime_to_hours(time_segments): time_segments_digits = float(re.findall(r"\d+\.\d+|\d+", time_segments)[0]) time_segments_hours = 0.0 if "H" in time_segments: time_segments_hours = time_segments_digits elif "T" in time_segments or "min" in time_segments: time_segments_hours = time_segments_digits / 60.0 elif "S" in time_segments: time_segments_hours = time_segments_digits / 60.0 / 60.0 return time_segments_hours def inBufferWindow(actual_hours, buffer_time): """ Converts the buffer_size, which is in hours, into segments and checks whether t is higher than ep_length-buffer Parameters ---------- actual_hours : int the current segment buffer_time : str the size of the buffer window in hours Returns ------- Returns true if t inside the buffer window """ if buffer_time is not None: buffer_time_mins = convert_hours_to_mins(strtime_to_hours(buffer_time)) return strtime_to_hours(convert_hours_to_mins(actual_hours)) <= buffer_time_mins return False time_segments_hours = time_segments_to_hours(chunks_type) last_segments_count = math.ceil(buffer_time / time_segments_hours) return ep_length - last_segments_count <= t def time_segments_to_hours(time_segments): time_segments_digits = float(re.findall(r"\d+", time_segments)[0]) time_segments_hours = 0.0 if "H" in time_segments: time_segments_hours = time_segments_digits elif "T" in time_segments or "min" in time_segments: time_segments_hours = time_segments_digits / 60.0 elif "S" in time_segments: time_segments_hours = time_segments_digits / 60.0 / 60.0 return time_segments_hours def fetch_influxdb_data( inf_client, start_date, end_date, dbname, measurement, multidimensional_data ): dataset_dates = [] dataset_values = [] if multidimensional_data: query = ( "SELECT * FROM " + measurement + " WHERE " + "time>='" + start_date + "' AND time <= '" + end_date + "'" ) result = inf_client.query(query, database=dbname) if len(result.items()) > 0: for c in result.items()[0][1]: ae = [0] * (len(c.keys()) - 1) for key in c.keys(): if key == "time": time = c["time"] else: ae[int(key)] = c[key] if len(ae) == 1 or sum(ae) == 0: continue dataset_dates.append(time) dataset_values.append(ae) else: query = ( "SELECT * FROM " + measurement + " WHERE " + "time>='" + start_date + "' AND time <= '" + end_date + "'" ) result = inf_client.query(query, database=dbname) if len(result.items()) > 0: for c in result.items()[0][1]: ae = [0] * (len(c.keys()) - 1) for key in c.keys(): if key == "time": time = c["time"] else: ae[int(re.findall(r"\d+\.\d+|\d+", key)[0])] = c[key] if len(ae) == 1 or sum(ae) == 0: continue dataset_dates.append(time) dataset_values.append(max(ae)) return dataset_dates, dataset_values def compute_thresholds( warning_hours_thres, prediction_threshold, s, midpoint, hours_before, buffer_time ): buffer_time_mins = 0 if buffer_time is not None: buffer_time_mins = convert_hours_to_mins(strtime_to_hours(buffer_time)) if warning_hours_thres is not None: prediction_threshold = sigmoid_risk( s, convert_hours_to_mins(strtime_to_hours(midpoint)), convert_hours_to_mins(strtime_to_hours(warning_hours_thres)) - buffer_time_mins, ) else: warning_hours_thres = ( sigmoid_mins( prediction_threshold, s, convert_hours_to_mins(strtime_to_hours(midpoint)), hours_before, ) / 60.0 ) return warning_hours_thres, prediction_threshold |