Blame view
MLTD/src/MLTD_API.py
16.4 KB
0d8c0f816 initial commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# -*- coding: utf-8 -*- import signal from flask import Flask, request, jsonify, json from flask_sqlalchemy import SQLAlchemy from flask_restful import Resource, Api import Training as pdm_train import Utils from OnlinePrediction import OnlinePrediction import os from flask_cors import CORS from multiprocessing import Process import threading import queue import logging import logging.config import yaml MYDIR = os.path.dirname(os.path.realpath(__file__)) LOGGING_CONF_FILE = os.path.join(MYDIR, "logging.yml") def read_log_conf(yaml_file): with open(yaml_file) as f: logging.config.dictConfig(yaml.safe_load(f)) # temporarily added for the demo video your_rest_server_port = 5000 # We use a Thread to join a subprocess for two reasons: # 1) If a subprocess is not joined is considered as a zombie hence it cannot be stopped # 2) If the parent process joins the sub-process then the execution is freezed waiting for the sub-process to return/exit. # Hence, we use a Thread to join in order to avoid zombie process creation and to allow the parent process to continue its # execution. class Joiner(threading.Thread): def __init__(self, q): threading.Thread.__init__(self) self.__q = q def run(self): while True: child = self.__q.get() print(child) if child == None: return child.join() # stores the Pids of the running processes q = queue.Queue() running_prediction_processes = [] params = {} app = Flask(__name__) read_log_conf(LOGGING_CONF_FILE) app.logger = logging.getLogger("mltd-api") app.logger.info("MLTD API is running") # Cross-Origin Resource Sharing (CORS) - accept all origins - needed in order to communicate with the web interface cors = CORS(app, resources={"/*": {"origins": "*"}}) api = Api(app) # these details are used for the SQLite connection and handling # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~SQLite~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# basedir = os.path.abspath(os.path.dirname(__file__)) app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///" + os.path.join( basedir, "pdm.sqlite" ) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) class Model(db.Model): __tablename__ = "models" __table_args__ = {"extend_existing": True} model_id = db.Column(db.Integer, primary_key=True, autoincrement=True) description = db.Column(db.String(1000)) timedb_host = db.Column(db.String(180)) timedb_port = db.Column(db.String(5)) timedb_username = db.Column(db.String(180)) timedb_password = db.Column(db.String(180)) timedb_ssl = db.Column(db.String(180)) timedb_dbname = db.Column(db.String(80)) asset_id = db.Column(db.String(300)) timedb_adt_table = db.Column(db.String(300)) timedb_xlsiem_table = db.Column(db.String(300)) timedb_od_table = db.Column(db.String(300)) mp_thres_X = db.Column(db.Integer) mp_thres_Y = db.Column(db.Integer) mp_thres_Z = db.Column(db.Integer) mp_pat_length = db.Column(db.Integer) rf_s = db.Column(db.Float) rf_midpoint = db.Column(db.String(5)) hours_before = db.Column(db.String(5)) time_segments = db.Column(db.String(5)) incidents = db.relationship( "Failure_Incidents", backref="models", cascade="all, delete-orphan", lazy="joined", ) def __init__( self, description, timedb_host, timedb_port, timedb_username, timedb_password, timedb_ssl, timedb_dbname, asset_id, timedb_adt_table, timedb_xlsiem_table, timedb_od_table, mp_thres_X, mp_thres_Y, mp_thres_Z, mp_pat_length, rf_s, rf_midpoint, hours_before, time_segments, ): self.description = description self.timedb_host = timedb_host self.timedb_port = timedb_port self.timedb_username = timedb_username self.timedb_password = timedb_password self.timedb_ssl = timedb_ssl self.timedb_dbname = timedb_dbname self.asset_id = asset_id self.timedb_adt_table = timedb_adt_table self.timedb_xlsiem_table = timedb_xlsiem_table self.timedb_od_table = timedb_od_table self.mp_thres_X = mp_thres_X self.mp_thres_Y = mp_thres_Y self.mp_thres_Z = mp_thres_Z self.mp_pat_length = mp_pat_length self.rf_s = rf_s self.rf_midpoint = rf_midpoint self.hours_before = hours_before self.time_segments = time_segments def toString(self): fed = "[" # failure_event_dates for incident in self.incidents: fed += '"' + incident.date + '"' fed += "," if len(fed) > 1: fed = fed[: (len(fed) - 1)] fed += "]" return ( '{"model_id":"' + str(self.model_id) + '","description":"' + self.description + '","timedb_host":"' + self.timedb_host + '","timedb_port":"' + self.timedb_port + '","timedb_username":"' + self.timedb_username + '","timedb_password":"' + self.timedb_password + '","timedb_ssl":"' + self.timedb_ssl + '","timedb_dbname":"' + self.timedb_dbname + '","asset_id":"' + self.asset_id + '","timedb_adt_table":"' + self.timedb_adt_table + '","timedb_xlsiem_table":"' + self.timedb_xlsiem_table + '","timedb_od_table":"' + self.timedb_od_table + '","mp_thres_X":' + str(self.mp_thres_X) + ',"mp_thres_Y":' + str(self.mp_thres_Y) + ',"mp_thres_Z":' + str(self.mp_thres_Z) + ',"rf_s":' + str(self.rf_s) + ',"rf_midpoint":' + str(self.rf_midpoint) + ',"hours_before":' + str(self.hours_before) + ',"time_segments":"' + str(self.time_segments) + '","incidents":' + fed + "}" ) def toJSON(self): return json.loads(self.toString()) class Failure_Incidents(db.Model): __tablename__ = "dates" __table_args__ = {"extend_existing": True} date_id = db.Column(db.Integer, primary_key=True, autoincrement=True) model_id = db.Column(db.Integer, db.ForeignKey("models.model_id"), nullable=False) date = db.Column(db.String(24)) def __init__(self, model_id, date): self.model_id = model_id self.date = date db.create_all() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~end of SQLite~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Training API Endopoints~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # endpoint to create new model @app.route("/api/v1.0/mltd/training", methods=["POST"]) def add_model(): description = request.json["description"] timedb_host = request.json["timedb_host"] timedb_port = request.json["timedb_port"] timedb_username = request.json["timedb_username"] timedb_password = request.json["timedb_password"] timedb_ssl = request.json["timedb_ssl"] timedb_dbname = request.json["timedb_dbname"] asset_id = request.json["asset_id"] timedb_adt_table = request.json["timedb_adt_table"] timedb_xlsiem_table = request.json["timedb_xlsiem_table"] timedb_od_table = request.json["timedb_od_table"] mp_thres_X = request.json["mp_thres_X"] mp_thres_Y = request.json["mp_thres_Y"] mp_thres_Z = request.json["mp_thres_Z"] mp_pat_length = request.json["mp_pat_length"] rf_s = request.json["rf_s"] rf_midpoint = request.json["rf_midpoint"] hours_before = request.json["hours_before"] time_segments = request.json["time_segments"] dates = request.json["dates"] rre = bool(request.json["rre"]) rfe = bool(request.json["rfe"]) kofe = bool(request.json["kofe"]) mil_over = bool(request.json["mil_over"]) fs = bool(request.json["fs"]) new_model = Model( description, timedb_host, timedb_port, timedb_username, timedb_password, timedb_ssl, timedb_dbname, asset_id, timedb_adt_table, timedb_xlsiem_table, timedb_od_table, mp_thres_X, mp_thres_Y, mp_thres_Z, mp_pat_length, rf_s, rf_midpoint, hours_before, time_segments, ) db.session.add(new_model) db.session.commit() for date in dates: date = Failure_Incidents(model_id=new_model.model_id, date=date) db.session.add(date) db.session.commit() app.logger.info("MLTD Training is triggered") proc = Process( target=pdm_train.do_the_training, args=( new_model.model_id, timedb_host, timedb_port, timedb_username, timedb_password, timedb_ssl, timedb_dbname, asset_id, timedb_adt_table, timedb_xlsiem_table, timedb_od_table, mp_thres_X, mp_thres_Y, mp_thres_Z, mp_pat_length, rf_s, rf_midpoint, hours_before, time_segments, dates, False, rre, rfe, kofe, mil_over, fs, ), ) proc.start() print(proc.pid) q.put(proc) j = Joiner(q) j.start() return jsonify({"model_id": new_model.model_id, "process_id": proc.pid}) # endpoint to check whether the training process is still runinng @app.route("/api/v1.0/mltd/training/status/<int:pid>", methods=["GET"]) def is_running(pid): return jsonify({"is_running": check_pid(pid)}) def check_pid(pid): """ Check For the existence of a unix pid. """ try: os.kill(pid, 0) except OSError: return False else: return True # endpoint to show all models @app.route("/api/v1.0/mltd/training", methods=["GET"]) def get_model(): all_models_list = "[" all_models = Model.query.all() for model in all_models: all_models_list += model.toString() all_models_list += "," if len(all_models_list) > 1: all_models_list = all_models_list[: (len(all_models_list) - 1)] all_models_list += "]" print(all_models_list) return jsonify(json.loads(all_models_list)) # endpoint to get model detail by id @app.route("/api/v1.0/mltd/training/<id>", methods=["GET"]) def model_detail(id): model = Model.query.get(id) print(model.toString()) return jsonify(model.toJSON()) # model_schema.jsonify(model) # endpoint to delete model @app.route("/api/v1.0/mltd/training/<id>", methods=["DELETE"]) def model_delete(id): model = Model.query.get(id) db.session.delete(model) db.session.commit() if os.path.exists(os.path.join(basedir, "train_" + str(id) + ".dat")): os.remove(os.path.join(basedir, "train_" + str(id) + ".dat")) else: app.logger.error("The file does not exist") return jsonify(model.toJSON()) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~End of Training API Endopoints~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Threats Identification API Endopoints~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # endpoint to start the online prediction process @app.route("/api/v1.0/mltd/threat-identification/<trainID>/<top>", methods=["GET"]) def obtain_new_threats(trainID, top): sql_conn = Utils.create_sqlite_connection("pdm.sqlite") time_segments = Utils.select_model_attribute( sql_conn, trainID, "time_segments" ) pdm_online = OnlinePrediction() ( pat_length, weak_bins_mapping, mp, dataset_values, regr, feature_importance, artificial_events_generation, ) = pdm_online.load_data("train_" + str(trainID) + ".dat") imp_events = feature_importance[: int(top)].index.values return jsonify({"important_events": str(list(imp_events)),"timeframe":time_segments}) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~End of Threats Identification API Endopoints~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Prediction API Endopoints~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # endpoint to start the online prediction process @app.route("/api/v1.0/mltd/prediction", methods=["POST"]) def run_prediction(): # get data from the JSON of the POST request model_id = int(request.json["model_id"]) mqtt_host = request.json["mqtt_host"] mqtt_port = int(request.json["mqtt_port"]) mqtt_topic = request.json["mqtt_topic"] prediction_threshold = request.json["prediction_threshold"] report_timedb_host = request.json["report_timedb_host"] report_timedb_port = request.json["report_timedb_port"] report_timedb_username = request.json["report_timedb_username"] report_timedb_password = request.json["report_timedb_password"] report_timedb_database = request.json["report_timedb_database"] report_timedb_table = request.json["report_timedb_table"] report_timedb_ssl = request.json["report_timedb_ssl"] report_asset_id = request.json["report_asset_id"] app.logger.info("MLTD Online is triggered") # Start the online monitoring process in a new subprocess pdm_online = OnlinePrediction() proc = Process( target=pdm_online.start_online_prediction_MQTT, args=( model_id, mqtt_host, mqtt_port, mqtt_topic, prediction_threshold, report_timedb_host, report_timedb_port, report_timedb_username, report_timedb_password, report_timedb_database, report_timedb_table, report_timedb_ssl, report_asset_id, ), ) proc.start() # Put the Pid (Process id) in a Queue in order to be able to handle it (stop/get status) q.put(proc) running_prediction_processes.append(proc.pid) # Join the new process using a new Thread (see at be beginning of the script why) j = Joiner(q) j.start() # return the process_id return jsonify({"process_id": proc.pid}) # endpoint to get the defaults values for the online prediction process @app.route("/api/v1.0/mltd/prediction/defaults", methods=["GET"]) def get_defaults(): global params if len(params) == 0: default_values = {} default_values["model_id"] = "1" default_values["mqtt_host"] = "mqtt-broker" default_values["mqtt_port"] = "1883" default_values["mqtt_topic"] = "hot-forming-press/meas" default_values["prediction_threshold"] = "0.5" default_values["report_dss_host"] = "http://localhost" default_values["report_dss_port"] = "9100" default_values["report_timedb_host"] = "https://localhost" default_values["report_timedb_port"] = "8086" default_values["report_timedb_username"] = "" default_values["report_timedb_password"] = "" default_values["report_timedb_database"] = "Axoom1" default_values["report_timedb_table"] = "Predicted_failures" default_values["report_timedb_ssl"] = "True" return jsonify(default_values) else: return jsonify(params) # endpoint to get the defaults values for the online prediction process @app.route("/api/v1.0/mltd/prediction/saveParams", methods=["POST"]) def save_params(): global params params = request.json return jsonify("params saved") # endpoint to stop a specific online prediction instance @app.route("/api/v1.0/mltd/prediction/stop/<int:pid>", methods=["GET"]) def stop_prediction(pid): if Utils.check_pid(pid): os.kill(pid, signal.SIGTERM) running_prediction_processes.remove(pid) return jsonify("stopped") # endpoint to get all the online prediction instances @app.route("/api/v1.0/mltd/prediction/status", methods=["GET"]) def get_running_predictions(): global running_prediction_processes pids = {} for pid in running_prediction_processes: pids[pid] = "/api/v1.0/mltd/prediction/stop/" + str(pid) return jsonify(pids) # endpoint to check whether the prediction instance is still running @app.route("/api/v1.0/mltd/prediction/status/<int:pid>", methods=["GET"]) def is_running_prediction(pid): return jsonify({"is_running": Utils.check_pid(pid)}) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~End of Prediction API Endopoints~~~~~~~~~~~~~~~~~~~~~~~~~~~~# if __name__ == "__main__": app.run( debug=False, host="0.0.0.0" ) # open the API to everyone (i.e. host=0.0.0.0 (unsafe)), api accessible from 5000 port |