
log2cloud: Log-based Prediction of Cost-Performance
Trade-offs for Cloud Deployments

Diego Perez-Palacin
Dpt. de Informática e

Ingeniería de Sistemas
Universidad de Zaragoza

Spain
diegop@unizar.es

Radu Calinescu
Department of

Computer Science
University of York
United Kingdom

radu.calinescu@york.ac.uk

José Merseguer
Dpt. de Informática e

Ingeniería de Sistemas
Universidad de Zaragoza

Spain
jmerse@unizar.es

ABSTRACT
Numerous organisations are considering moving at least some
of their existing applications to the cloud. A key motivating
factor for this fast-paced adoption of cloud is the expectation
of cost savings. Estimating what these cost savings might
be requires comparing the known cost of running an applica-
tion in-house with a predicted cost of its cloud deployment.
A major problem with this approach is the lack of suitable
techniques for predicting the cost of the virtual machines
(VMs) that a cloud-deployed application requires in order
to achieve a given service-level agreement. We introduce a
technique that addresses this problem by using established
results from queueing network theory to predict the mini-
mum VM cost of cloud deployments starting from existing
application logs. We describe how this formal technique can
be used to predict the cost-performance trade-offs available
for the cloud deployment of an application, and presents a
case study based on a real-world webmail service.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Modeling Techniques];
D.4.8 [Performance]: [Stochastic analysis]

Keywords
Cloud computing, cost, performance, log analysis

1. INTRODUCTION
The pay-as-you-go virtualised infrastructure offered by cloud

providers represents an attractive alternative to using in-
house resources to run an organisation’s software applica-
tions. Cloud computing offers not only the prospect of major
cost savings, but also a significant reduction in the exper-
tise required to set up and run these applications [2, 18, 20].
Nevertheless, it is still difficult for an organisation to decide
whether to choose a cloud versus an in-house deployment for

���������	
� ���� ���
�� �� ��� ������ �� ��� �� ���
 ��
��� ���� ���
�����	�� �� ��������� ��� �� ���	
� ��
���
 ��� ������
��
 ������ ���
	�
 ��� �� ��
����
� ��� ����
 �� ���������� ���	
��� �	
��
 ������
����
��� 	�
��� �	
�� ���� ��
�
��	 �	
�� ���
 ����� �� ���� �
��������
�
����������
� ���
 �	 ������� ��
� ����
����
�
� ���
�� �������� ����� �������
���������	 �	��� � ����
SAC’13����� !"##� #$ %� &������� ���
�����
&�������
 #$ % '&� ()!" "*+$%" ,+,"(� %�$% ���- +�$$�

an existing application portfolio. This is due both to con-
cerns over the security, availability and legal implications of
cloud deployments [3, 5, 9], and to uncertainties about the
cost savings that they can actually achieve [19].

In this paper we focus on the second area of concern men-
tioned above, namely on the cost implications of moving an
existing application to the cloud. Although multiple tools
that assess these costs have been developed in recent years
by both the research community [6, 8] and by cloud providers
[1, 14], they all suffer from a major limitation: they take as
input a specification of the resource needs of the analysed
applications. Assuming that an organisation can provide
such specifications is unrealistic, especially when the aim is
to predict the minimum costs that can be achieved by vary-
ing the number of virtual machines (VMs) used for a cloud-
deployed application in line with the application workload.

Our “log-to-cloud” (log2cloud) approach overcomes this
limitation for request-handling applications such as web and
email servers by using established queueing network theory
results to calculate the VM resources required to achieve
a given service-level agreement (SLA) starting from exist-
ing application logs. As many of these applications gener-
ate such logs, our solution eliminates the need for “guessti-
mating” the resource usage profile of an existing application
when assessing the cost of its cloud deployment. Applica-
tion logs represent an important source of valuable raw data
for the management of IT systems [15] through performance
optimisation [17], security analysis [11], and resource usage
profiling and capacity planning [4].

Note that log2cloud focuses on VM costs because the other
contributors to the overall cost of a cloud deployment are
independent of the required SLA, and are trivial to calcu-
late. For example, the data storage cost can be predicted
easily based on the in-house data footprint of the applica-
tion. Likewise, the I/O data transfer cost can be calculated
from the overall amount of exchanged network traffic for the
application, as recorded in the application log.

The application logs that log2cloud uses as input are logs
that record the number of requests handled by the applica-
tion during successive time intervals of equal duration. The
other input parameters used by the approach are: (a) an
application SLA that specifies a maximum response time
and the probability with which this response time must
be achieved; and (b) the cloud infrastructure performance
(measured as described later in the paper) and cost.

A special feature of log2cloud is that it supports the cal-
culation of cost estimates associated with a range of SLAs

397

./' 0����������	��

'������
��	 ��.�	
��������
����������
�����������

��������

��	 �����
��

��	

&��
��� ��������
����������
�� #����

��	

�	������

&��
�����

Figure 1: The two-stage log2cloud approach

for the analysed application. This enables application own-
ers to understand the different performance-cost tradeoffs
available for a cloud deployment of their applications, and
to choose tradeoffs that suits their needs—or to decide that
a cloud deployment is not cost effective.

The main contributions of the paper are:

1. A new technique that uses queuing network theory to
derive the (VM) resource usage profile of an application
from its (a) request handling log and (b) required SLA.

2. An open-source implementation of the technique described
above as a Java library that is easy to integrate with ex-
isting tools for analysing the cost of cloud deployments.

3. The integration of our Java resource usage profile gener-
ator with the tool for the analysis of cloud deployments
we previously developed in [6].

4. A case study that illustrates the application of log2cloud
to a real-world webmail service.

The rest of the paper starts with an overview of the log2cloud
approach in Section 2, followed by the introduction of a run-
ning example in Section 3. We then describe the steps of the
approach in Section 4, and the case study use to evaluate its
effectiveness in Section 5. Section 6 describes related work,
and Section 7 concludes the paper with a brief summary.

2. log2cloud OVERVIEW
The log2cloud approach produces a cost prediction for the

cloud deployment of an application in two stages (Figure 1).
In the first stage, log2cloud generates a formal, compact
“profile” of the cloud resources required by the application.
This profile is called a probabilistic resource usage pattern
[6], and abstracts out the irrelevant details of the raw data
from the application log into a concise, well defined and easy
to manipulate format. The probabilistic resource usage pat-
terns are then analysed in the second log2cloud stage by us-
ing the open-source“probabilistic pattern modelling”tool in-
troduced in [6] and freely available on-line at http://www1.
aston.ac.uk/eas/staff/dr-kenneth-johnson/ppm/. The
outcome of this analysis is a cost prediction for the cloud
deployment of the application.

Application log The first log2cloud stage handles applica-
tion logs of the form

log = (n1, n2, . . . , nN), (1)

where n1, n2, . . . , nN represent the number of requests re-
ceived by the application in N consecutive time intervals of
length t > 0 each. The time period covered by the applica-
tion log (i.e., N · t) must extend over at least a few days in
order to permit the extraction of a meaningful probabilistic
resource usage pattern.

Another common type of application log supported by
log2cloud is one that records the timestamp of each individ-
ual request received by the application. Since this raw data

can be converted into the former type of log by counting
the number of requests received within each time interval of
length t, we will describe the operation of log2cloud only for
the first type of log.

Note that many applications (including, for instance, the
widely used Apache HTTP web server) generate logs that
can be configured to record the request handling data de-
scribed above.

Service-level agreement (SLA) We consider application
SLAs of the form

sla = (r, p), (2)

where r > 0 represents a response time and p ∈ [0, 1] is a
probability. An application or service is deemed to satisfy
an SLA sla = (r, p) if the probability of a request being
handled within r time units is at least p. As an example,
the SLA sla1 = (500ms, 0.95) is satisfied by an application
if and only if the probability that the application handles
a generic request within 500 milliseconds is greater than or
equal to 0.95. Note that, in the long term, such an applica-
tion will handle at least 95% of its requests within 500ms.

Virtual machine (VM) performance The performance
of a VM is specified as the mean service rate

μ > 0 (3)

of an instance of the analysed application that is running on
that VM. Obtaining this information involves installing an
instance of the application on each different type of VM con-
sidered in the analysis, and carrying out a modest number
of tests to measure the service rate on each such VM. The
cost of the cloud resources used for these tests is negligible;
whereas the effort to install and configure the application
to run on cloud infrastructure, although significant, is re-
quired anyway (assuming that a cloud deployment is even-
tually adopted).

Cost model We consider a simple cost model in which the
cost of using a VM for a time interval of length T > 0 (or
for any part of such a time interval) is a constant

c > 0. (4)

This way of modelling VM cost is consistent with the typical
cost models of established cloud providers such as Amazon
EC2. For simplicity, we will assume that the costing time
interval T is a multiple of the logging time interval t (i.e.,
T = kt for some integer value k ≥ 1). We will also con-
sider that SLA compliance is required for each time interval
of duration T . For instance, an application will be deemed
compliant with the SLA sla1 = (500ms, 0.95) if, within each
time interval [0, T), [T, 2T), [2T, 3T), . . . , it serves 95% or
more of its requests in at most 500ms.

Probabilistic resource usage pattern The resource us-
age profiles synthesised during the first log2cloud stage and
used as input by its second stage are encoded as probabilistic
patterns with the following syntax taken from [6]:

398

Baseline bl
Rule Start s1 Vary v1 Repeat f1 Until u1

Rule Start s2 Vary v2 Repeat f2 Until u2

. . .
Rule Start sP Vary vP Repeat fP Until uP

(5)

where bl ≥ 0 represents a constant amount of resources that
is used as a baseline for the pattern, and the parameters of
the i-th rule, 1 ≤ i ≤ P , have the following role:

• si specifies the (start) time when the rule applies, e.g.,
Jul 2, 9am;

• vi defines the resource usage from time instant si on-
wards, through specifying the probabilities with which
the resource usage varies with respect to either the
baseline bl or the resource usage before the application
of the rule, e.g., [0.8:bl_add(10)+0.2:bl_add(15)]

specifies bl+10 resource units with probability 0.8 and
bl + 15 resource units with probability 0.2;

• fi ∈ {Day, WeekDay, WeekEnd, Week, Month} is a param-
eter that indicates the frequency with which the rule
is applied;

• ui is an optional parameter that specifies the end time
for the application of rules that include a Repeat ele-
ment, e.g., Aug 31.

As an example, consider an application that needs five vir-
tual machines (VMs) at all times and, between 9am and 5pm
on week days, 10 additional VMs with probability 0.8 and
15 additional VMs with probability 0.2. This resource usage
profile can be encoded (for the period from 2nd July to 31st

August) by using the probabilistic resource usage pattern

Baseline 5

Rule Start Jul 2, 9am Vary [0.8:bl_add(10)+

0.2:bl_add(15)]

Repeat WeekDay Until Aug 31

Rule Start Jul 2, 5pm Vary [1.0:bl]

Repeat WeekDay Until Aug 31

For a complete description of the probabilistic resource usage
patterns used by log2cloud please see [6].

3. RUNNING EXAMPLE
To illustrate the application of log2cloud we will use the

University of Zaragoza’s webmail service as a running exam-
ple. This service handles over one million requests on an av-
erage day, and its log entries (available on-line at https://we
bmail.unizar.es/mail_monitor.php) show to the number
of requests handled during each minute of operation.

The graph in Figure 2 shows a typical minute-by-minute
variation in the number of requests handled by the web-
mail service over a 12-day time period. The workload peaks
and troughs in this graph correspond to the day-time and
night-time usage of the service, respectively. The signifi-
cant difference between the two types of workload suggests
that moving the service to cloud may lead to cost savings, as
much fewer VMs should be required during workload troughs
compared to workload peaks.

The application log in our running example is logwebmail =
(n1, n2, . . . , n17280), where ni, 1 ≤ i ≤ 17280, represents the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 4000 8000 12000 16000

re
qu

es
ts

 p
er

 m
in

ut
e

time [minutes]

Figure 2: Number of requests per minute handled by
the webmail service over the 12-day period between
Wed. 22 Feb. and Sun. 4 Mar. 2012.

number of requests handled by the webmail service during
the i-th minute of operation from the 12 days shown in Fig-
ure 2. Using the notation introduced in the previous section,
we have a logging time interval of length t = 1 minute, and
N = (12 days/1 minute) = 17280. In the remainder of the
paper, we will use logwebmail to analyse the cost of moving
the webmail service to cloud infrastructure. This analysis
will be carried out for a range of realistic SLAs and VM
parameters.

4. log2cloud DESCRIPTION

4.1 Stage 1: Synthesis of probabilistic resource
usage pattern

The pattern synthesis stage of the log2cloud approach
comprises three steps:

1a The resource trace extraction step calculates how many
VMs are required to satisfy the application SLA during
each costing time interval of size T = kt, over the dura-
tion of the analysed log.

1b The resource trace partition step splits the resource trace
described above into sub-traces associated with time pe-
riods characterised by similar resource usage.

1c The resource profile synthesis step uses the sub-traces in
step 1b to build a probabilistic resource usage pattern (5).

4.1.1 Step 1a: Resource trace extraction
This step uses the information provided by the applica-

tion log (1), the SLA (2) and the VM performance (3) to
calculate, if feasible, the resource trace

trace = (m1, m2, . . . , mN/k), (6)

where mi ≥ 0, 1 ≤ i ≤ N/k, represents the minimum num-
ber of VMs that the application must be deployed on during
the i-th costing time interval of size T . Figure 3 shows the
relationship between the log entries n1, n2, . . . , nN and the
resource trace entries m1, m2, . . . , mN/k.

To calculate the values mi ≥ 0, 1 ≤ i ≤ N/k, we use
a standard queueing theory result. This result states that
in an M/M/1 queue with request arrival rate λ and service
rate μ > λ, the probability that the response time τ of a
request is less than r is:

P (τ ≤ r) = 1 − e(λ−μ)r

399

	 	# 	1�	 �2 	 �2#	 #�	 	1��2 1��2#	

 � #� 1���

1
�
�33 1

�
4������5��

$
 #
 #�
4�2#5
�
4�� 5

3� 3#�

41��2 5�41��5

����

41��2#5� 41� 5
 1
4�2 5
 4#�� 5

/����	
������������
����
��
��������	�
�����	
������

6��������
����������	
���������
����
��
������
�	��
�����	
������

Figure 3: The relationship between the log entries and the resource trace entries.

or, if m > 0 independent application instances are used,

P (τ ≤ r) = 1 − e(λ/m−μ)r, (7)

where λ/m is the request arrival rate for one application in-
stance, assuming that incoming requests are randomly dis-
tributed among the independent queues of these instances.
Note that the probability in (7) is upper bounded by 1 −
e−μr, which corresponds to the scenario in which an “infi-
nite” number of application instances are used. This limits
the range of SLAs (r, p) that can be achieved using VMs
with service rate μ to those SLAs for which

p < 1 − e−μr (8)

If n ≥ 0 requests are handled by the application, then
the expected number of requests that are handled each in at
most r time units is

n · P (τ ≤ r) = n
“
1 − e(λ/m−μ)r

”
.

To use this result in the calculation of mi, 1 ≤ i ≤ N/k, we
consider the log entries associated with the i-th costing time
interval of size T , namely n(i−1)k+1, n(i−1)k+2, . . . , nik. We
assume that each of these log entries corresponds to a time
period during which the requests arrived with exponentially
distributed inter-arrival time1. The associated arrival rate
is:

λj = nj/t,

where (i − 1)k + 1 ≤ j ≤ ik. Accordingly, the expected
number of requests handled within r time units during the
i-th costing time interval when mi VMs are used is:

ikX
j=(i−1)k+1

nj

1 − e

„
λj
mi

−μ

«
r

!
=

ikX
j=(i−1)k+1

nj

„
1 − e

“ nj
mit

−μ
”

r

«
.

and the expected fraction of requests that satisfy the same
property is

f(mi) =

Pik
j=(i−1)k+1 nj

„
1 − e

“ nj
mit

−μ
”

r

«
Pik

j=(i−1)k+1 nj

.

As mentioned earlier, we deem that the SLA sla = (r, p) is
satisfied by a cloud-deployed version of the application iff

f(mi) ≥ p,

for 1 ≤ i ≤ N/k. We are interested in the smallest number
of VMs mi that satisfies this inequality, so we choose mi,
1 ≤ i ≤ N/k, such that:

f(mi) ≥ p > f(mi − 1).
1To offer a reliable assessment, this assumption requires a
sufficient small t, which is the case in our running example.

�

�

�

�

�

��

��

� �� ��� ��� ��� ��� 	��

�
�

�
��
�
��
�
�
�

������������

Figure 4: Resource trace corresponding to the
logwebmail application log from the running example

Assuming that constraint (8) is satisfied, the solution of this
inequality belongs to the interval [mi, mi], where mi and mi

represent the numbers of VMs required to satisfy the SLA for
the minimum and maximum request arrival rates in the i-th
costing time interval, respectively. Therefore, we first obtain
mi and mi by calculating the value m that satisfies eq. (7) for
λ = min(i−1)k+1≤j≤iknj/t and λ = max(i−1)k+1≤j≤iknj/t,
respectively, and then solve the inequality above using a
standard iterative approximation method based on a binary
search within the interval [mi, mi].

Example 1 Consider the webmail service log logwebmail

from our running example, and suppose that the length
of the costing time intervals is T = 1 hour. Accordingly,
we have k = T/t = (1 hour/1 minute) = 60, so the re-
source trace generated in this step of the approach will com-
prise N/k = 17280/60 = 288 elements: tracewebmail =
(m1, m2, . . . , m288). For example, assuming a VM service
rate μ = 10s−1 and an SLA sla = (1.5s, 0.99), the resource
trace will look like the graph in Figure 4.

4.1.2 Step 1b: Resource trace partition
This step partitions the resource trace (m1, m2, . . . , mN/k)

from eq. (6) into P ≥ 1 sub-traces associated with (dis-
joint) time intervals with similar resource requirements. The
generic form of the i-th sub-trace, 1 ≤ i ≤ P , is:

subtracei = (mi1 , mi2 , . . . , mix), (9)

where 1 ≤ i1 < i2 < . . . < ix ≤ N/k. Obtaining these
sub-traces involves:

i) dividing the time period into P sets of (costing) time
intervals tset1, tset2, . . . , tsetP , so that the elements in
the same set share a common time-related characteristic;

400

ii) placing the trace elements m1 to mN/k into disjoint sub-
traces associated with these P sets of timing intervals.

Several such partitions need to be analysed, to identify a
partition with sub-traces comprise elements whose variance
does not exceed a threshold. Partitions that we found par-
ticularly useful, from our experiments, are those that (a) can
be mapped easily to a probabilistic resource usage pattern
(5); and (b) correspond to the workload periodicities of typ-
ical applications. A (non-exhaustive) set of such partitions
is described below:

• “Time of day” is suitable for workloads that follow a pat-
tern during each day. In this case P = (24 hours/T),
and tseti comprises the i-th costing time interval for each
day.2

• “Time of day & type of day” is suitable for workloads
that follow a pattern during each working day, and a
different pattern during each weekend day. In this case
P = 2 × (24 hours/T), tseti comprises the i-th costing
time interval for each working day, and tseti, P/2 + 1 ≤
i ≤ P , comprises the (i − P/2)-th costing time interval
for each weekend day.

• “Time of day & day of month”partition comprises (24 hours/T)
sub-traces for each day of month, so P = 31×(24 hours/T).
tseti comprises the (i mod (24 hours/T))-th time inter-
val from each �i/(24 hours/T)�-th month day. Only months
with complete traces (i.e., 30 or 31 tracked days) can con-
tribute.

Our strategy for identifying a good partition assesses the
partitions above in increasing P order, and selects the first
partition whose sub-traces do not exceed a variance thresh-
old. The rationale is that a partition with few sub-traces
yields a probabilistic resource usage pattern that is more
concise and therefore easier to analyse. When no partition
can be selected, log2cloud uses that whose sub-traces exceed
the threshold the least.

Example 2 In our running example, the duration of a cost-
ing time interval is T = 1 hour. Accordingly, the “time of
day” partition has P = 24 sub-traces (shown in Fig. 5a),
the “time of day & type of day” partition has 48 sub-traces
(shown in Fig. 5b), etc. Suppose that a threshold of 6.0 is
chosen for the maximum allowed sub-trace variance. This
criterion is not satisfied by the sub-traces from the “time of
day”partition, e.g., the variance of subtrace13 = (10, 9, 9, 4, 4,
10, 10, 10, 10, 10, 4, 3) (corresponding to the time interval be-
tween 12pm and 1pm) has a variance of 8.19. However, the
variance of each of the 48 sub-traces from the “time of day
& type of day” partition is below 1.69, so this partition can
be selected and used in the next log2cloud step.

4.1.3 Step 1c: Resource profile synthesis
This log2cloud step synthesises a P -rule probabilistic re-

source usage pattern (5) from the resource trace partition
subtrace1, subtrace2, . . . , subtraceP . The baseline bl and
the i-th rule of this pattern, 1≤i≤P , are obtained as follows:

Baseline bl. We select as baseline the statistical mode of

2We assume that 24 hours is a multiple of the costing time
period T .

�����������	�
�����

�����������	�
�����

�����������	�
�����

�������������������������

�
�
�
�
�
��
�
��
�

�

�

�

�

�

��

� � � ! � � � "

�

�

�

�

��

� � � !

�

�

�

�

��

� � � ! � � � "

�

�

�

�

��

� � � !

�

�

�

�

��

� � � ! � � � "

�

�

�

�

��

� � � !

�

�

�

�

��

� � � ! � � � "

�

�

�

�

��

� � � !

�����������	�#��$#�� �����������	�#��$#��

�����������	�#��$#�� �����������	�#��$#��

�����������	�
�����

�����������	�
����������	�
�������	
	
��

�����������	�
�������	
	
��

�

�

�

�

��

� � � ! � � � " % �� ��

�����������

�

�

�

�

��

� � � ! � � � " % �� ��

�����������

�

�

�

�

��

� � � ! � � � " % �� ��
�

�

�

�

��

� � � ! � � � " % �� ��

�����������

�����������

�������������������������

�
�
�
�
�
��
�
��
�

�

Figure 5: Sub-traces for the running example.

one of the sub-traces with the lowest variance:

bl = mode(subtracex),

where x ∈ arg min
1≤i≤P

V ar(subtracei). This choice ensures that

bl represents a value that occurs frequently in the resource
trace partition.

Rule Start si Vary vi Repeat fi Until ui. The parameters
si, vi, fi and ui of this rule are extracted from subtracei =
(mi1 , mi2 , . . . , mix) as follows:

• si represents the start of the costing time interval asso-
ciated with mi1 , i.e., the oldest element in the sub-trace;

401

• vi is obtained by calculating the frequency of each dis-
tinct element from subtracei. Assuming that the dis-
tinct elements from subtracei are y1, y2, . . . , yq for some
1 ≤ q ≤ x, and that their frequencies are freq1, freq2,
. . . , freqq, the resulting vi will have the form

vi = [freq1:op1+freq2:op2+ . . . +freqq:opq]

where, for 1 ≤ j ≤ q,

opj =

8<
:

bl_add(yj − bl) if yj > bl
baseline if yj = bl
bl_sub(bl − yj) otherwise

• fi depends on the type of partition used to obtain the P
sub-traces and, for the “time of day & type of day”, on
the value of i:

fi =

8>>>>>>><
>>>>>>>:

Day if partition=“time of day”
WeekDay if partition=“time of day & type of day”

and i ≤ P/2
WeekEnd if partition=“time of day & type of day”

and i > P/2
Week if partition=“time of day & day of week”
Month if partition=“time of day & day of month”

The rationale behind“time of day & day of week” is anal-
ogous to “time of day & day of month”.

• The end time parameter up is set to a date far enough
from the start time sp, for example six months or one
year. This enables the calculation of the expected cost of
a cloud deployment over a longer time interval.

Example 3 We return to our running example and the“time
of day and type of day” resource trace partition selected for
it in the previous log2cloud step described in Example 2.
This trace partition comprises 48 sub-traces, so the associ-
ated probabilistic resource usage pattern has 48 Rules. The
sub-trace with the lowest variance within the partition is
subtrace4 = (1, 1, 1, 1, 1, 1, 1, 1), so the baseline used for the
pattern is bl = mode(subtrace4) = 1. To generate the Rule

associated with this sub-trace, we note that the distinct el-
ements in subtrace4 are y1 = 1, and that its frequency is
freq1 = 8/8 = 1.0. Accordingly, the associated rule is:

Rule Start Feb 22, 4am Vary [1.0:baseline]

Repeat WeekDay Until Dec 31

where Feb 22 represents the start of the first costing time
interval in subtrace4, the end time was chosen to be the
end of the year, and the WeekDay frequency was obtained
using the above definition for fi. The other 47 Rules for
this pattern are obtained in a similar way. An excerpt of
the overall probabilistic resource usage pattern generated
by this step is shown below:

Baseline: 1

Rule Start Feb 22, 0am Vary [0.125:baseline_add(1)

+0.5:baseline_add(2) + 0.375:baseline_add(3)]

Repeat WeekDay Until Dec 31

...

Rule Start Feb 22, 4am Vary [1.0:baseline]

Repeat WeekDay Until Dec,31

...

Rule Start Feb 22,12pm Vary [0.25:baseline_add(8)

+ 0.75:baseline_add(9)]

Repeat WeekDay Until Dec 31

...

Rule Start Feb 25, 12pm Vary [1.0:baseline_add(3)]

Repeat WeekEnd Until Dec 31

Rule Start Feb 25, 1pm Vary [0.25:baseline_add(2)

+ 0.75:baseline_add(3)]

Repeat WeekEnd Until Dec 31

...

4.2 Stage 2: Pattern analysis
Once the probabilistic resource usage pattern has been

synthesized in the first log2cloud stage, during the second
stage the pattern is analyzed to evaluate the VM cost of
the cloud deployment. This analysis applies the method
introduced in [6], which comprises two steps:

i. translating the probabilistic resource usage pattern into
an equivalent Markov decision process (MDP);

ii. using the quantitative model checking techniques pre-
sented in [6] to evaluate the overall amount of VM re-
sources associated with this MDP (particularly, we have
used methods that calculate the cumulative function),
and with the time period for which the cloud deployment
of the original application is analyzed.

The result of the evaluation from the second step is the total
number of VM costing time intervals for which the applica-
tion owner needs to pay. Accordingly, the total VM cost is
obtained by multiplying this value by the cost c > 0 of using
one VM for a single time interval. Due to space limitations
we do not present these steps here. For a detail description
of the method and its underpinning theory, the reader is re-
ferred to [6].

Example 4 Consider again the probabilistic resource usage
pattern generated for our webmail service in Example 3.
We used this pattern as input for the analysis tool from
[6], and we selected the time period between 22 February
and 31 December as the time period to analyze. The result
of the analysis indicated that the application needs to use
34,115.25 hours of VM resources in order to achieve the SLA
chosen in Example 1 (i.e., sla = (1.5s, 0.99)). Assuming that
the cost of using a VM for a one-hour costing time interval
is $0.66, the predicted overall VM cost for the cloud deploy-
ment of the webmail service is $22,516.065. The predicted
mean monthly cost for the cloud deployment is $22,516.065×
(30 days / 313 days) =$2,158.09 (since there are 313 days
between 22 February and 31 December 2012, and assuming
that a month has 30 days on average).

5. IMPLEMENTATION AND CASE STUDY
We implemented the log2cloud approach as an open-source

Java library, in order to facilitate integration with other tools
for assessing the implications of migrating applications to
cloud. Also, we developed a prototype log2cloud tool that
uses this library to predict the VM costs of deploying an ap-
plication on cloud infrastructure, starting from an existing
application log and an SLA that the application is required
to achieve. The log2cloud Java library and the prototype
tool are freely available and can be downloaded from [12].

To evaluate the log2cloud approach and its implementa-
tion, we used the log2cloud tool in a case study. Our case
study assessed the VM costs of deploying the webmail ser-
vice from our running example on different types of Amazon

402

Table 1: VM performance and cost

Amazon EC2 instance type
Standard High-CPU High-CPU
Small Medium Extra Large
(S) (M) (XL)

performance μ 2.5s−1 5s−1 10s−1

cost c $0.08 $0.165 $0.66

Table 2: Mean monthly VM costs for a cloud de-
ployment of the webmail service. The lowest cost
for each SLA is shaded, and dashes (‘—’) are used
to mark VM–SLA combinations that are unfeasible
(i.e., the constraint in eq. (8) is not satisfied).

(a) results for sla = (r, 0.99)

response time r
VM type 1.0s 1.5s 2.0s

S — — $4025.09
M $6353.42 $1628.75 $1228.39
XL $2561.33 $2157.41 $2033.86

(b) results for sla = (r, 0.999)

response time r
VM type 1.0s 1.5s 2.0s

S — — —
M — $6373.62 $2018.65
XL $4153.25 $2637.36 $2323.73

EC23 instances (i.e., virtual machines), for a range of SLAs.
The three types of Amazon EC2 instances considered in our
experiments are shown in Table 1. The VM costs in this
table are the actual costs of Amazon EC2 instances (as of
26th September 2012). A plausible value was chosen for the
VM performance of the Standard Small EC2 instance ([7]
suggests best practices for measuring the actual VM per-
formance). The VM performance for each of the other VM
types was estimated based on the relative difference in per-
formance between that VM type and the Standard Small
VM type (e.g., as measured in some of the benchmarking
experiments in [7]).

We considered six possible SLAs, corresponding to achiev-
ing a response time of at most 1.0s, 1.5s and 2.0s with prob-
ability 0.99 and 0.999, i.e.,

sla = (r, p) ∈ {1.0, 1.5, 2.0} ×{ 0.99, 0.999}
and we used the application log from the running example
(shown in Figure 2).

Table 2 shows the results of applying the log2cloud VM
cost-performance prediction approach to the application log,
range of SLAs and VM types described above, i.e., proba-
bilistic pattern synthesis and subsequent pattern analysis
using theoretical results in [6]. Analyzing these results we
could draw the following useful conclusions about a possible
cloud deployment of the webmail service, and about deploy-
ing an application on cloud infrastructure in general:

1. Demanding SLAs cannot be achieved using low-performance

3http://aws.amazon.com/ec2/

VMs, irrespective of how many such VMs are used. For
instance, Standard Small EC2 instances (i.e., VMs of
type S in Table 2) can achieve only the least demand-
ing of the six SLAs in our case study, sla = (2.0s,0.99).
This is due to the fact that the performance μ of this
type of VM does not satisfy the constraint in eq. (8) for
any of the other five SLAs.

2. The lowest cost for a given SLA does not necessarily cor-
respond to the least expensive type of VM that can be
used to achieve that SLA. For example, the lowest cost
to achieve the SLA sla = (1.0s, 0.99) for the webmail ser-
vice in our case study is obtained when VMs of type XL
are used; using VMs of type M to achieve the same SLA
would cost almost three times as much.

3. Reducing the response time r of the application SLA for
a fixed probability p leads to an exponential increase in
VM costs. As an example, reducing the response time r
of our webmail service from 2.0s to 1.5s, and from 1.5s to
1.0s for p = 0.999 corresponds to cost increases of slightly
over $600 and $1,500, respectively.

4. The cost implications of not choosing the most cost-effective
type of VM for a cloud deployment are significant. All
three types of VM in our case study can achieve the SLA
sla = (2.0s, 0.99), but the differences between the opti-
mal monthly cost (corresponding to VMs of type M) and
the monthly costs for deployments using the other two
VM types are almost $2,800 and $800, respectively. Note
that these costs could be much higher in the worst-case
scenario in which a VM type that cannot satisfy an SLA
is chosen for a deployment, and the number of such VMs
used to run the application is scaled up automatically in
an (impossible) attempt to achieve this SLA.

These insights demonstrate the usefulness of the log2cloud
approach to assessing the (VM) cost-performance trade-offs
of cloud deployments.

6. RELATEDWORK
Very limited support is currently available for organiza-

tions interested in analyzing the possible costs of running
their existing applications in the cloud. Although all major
cloud providers offer calculators to estimate the costs of such
deployments (e.g., Amazon [1], Windows Azure [14], and
Rackspace [16]), the capabilities of these calculators is lim-
ited. In particular, they tend to consider that a fixed number
of active VMs are used at all times, although a key charac-
teristic of cloud deployments is to save costs by varying the
number of active VMs in line with application demand. Al-
though the Amazon [1] and Rackspace [16] calculators also
allow the specification of the number of hours per month
when a set of VMs is estimated to be active, no support is
available for users to obtain these estimates for their appli-
cations. Our approach avoids the need for guessing the VM
needs of an existing application by using the logs of that
application to predict the cost of its cloud deployment.

Research on predicting the cost-performance trade-offs of
deploying an existing application on cloud infrastructure is,
to the best of our knowledge, very limited. The approach
in [10] estimates the costs of the cloud and in-house delopy-
ments of an application by considering the expected and
unexpected changes in the application workload. The cost
metric used in [10]—although cumulative over the analyzed
time period like the one used by log2cloud—is too coarse-

403

grained to support the detailed analysis that is possible with
log2cloud (cf. Section 5). In [13], the authors present an ex-
periment that assesses the VM costs for multiple SLAs (ex-
pressed as utility functions) when capacity planning tech-
niques are used to vary the number of VMs so that these
SLAs are achieved. This approach can provide accurate re-
sults, but is limited to scenarios in which it is possible to
actually run the application on the cloud, which makes it
unsuitable for the scenarios targetted by log2cloud i.e., as-
sessing cloud deployment costs for existing applications prior
to deploying them on cloud infrastructure. Finally, the cost
calculators from the “cloud adoption toolkit” in [8] and from
the project in [6] are sophisticated versions of the calculators
made available by cloud providers, since they also require
the user to specify their VM resource needs as input. Our
log2cloud used the results from [6] in its second stage, but
starts from an existing application log in its calculation of
the costs of a cloud deployment.

7. CONCLUSION
We introduced a new method that, based on queueing

network theory, extracts a resource usage profile from an
existing application log, and uses this profile to predict the
VM costs for a cloud deployment of the application. We
implemented the method as a Java library, and developed
a prototype tool for analyzing the (VM) cost-performance
trade-offs of cloud deployments. The case study presented
in the paper showed that this tool can be used to gain useful
insights into the options available for the cloud deployment
of an existing application. An assumption of this study is
that VMs operate independently and do not impact each
other, even if it is not always the case nowadays. However,
significant progress has been made in virtualization technol-
ogy to improve this issue, and more progress is expected.

The overall cost of running an application in the cloud
includes many other components, for example, data storage
costs and I/O data transfer costs. This paper focused only
on VM costs because varying the type and number of VMs
used for a cloud-deployed application has a major impact on
the SLA that the application will achieve. In future work,
we aim to experiment with real applications. Moreover, we
plan to extend the log2cloud analysis to also cover the other
components of the cost of cloud deployments, e.g., through
integrating it with the cost calculator from the toolkit in
[8]. Finally, we will apply the extended toolkit to the cloud
deployment of a real benchmark application.

Acknowledgements
This work was partly supported by the UK Engineering and
Physical Sciences Research Council grant EP/H042644/1
and by Spanish CICYT DPI2010-20413

8. REFERENCES
[1] AWS. Simple Monthly Calculator, 2012.

http://calculator.s3.amazonaws.com/calc5.html.

[2] M. Armbrust et al. A view of cloud computing.
Commun. ACM, 53:50–58, 2010.

[3] R. Buyya et al. Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computer Systems, 25(6):599–616, 2009.

[4] A. Ganapathi et al. Statistics-driven workload
modeling for the cloud. In IEEE Intl. Conf. on Data
Engineering Workshops, pages 87–92, 2010.

[5] M. Jensen, J. Schwenk, N. Gruschka, and L. Iacono.
On Technical Security Issues in Cloud Computing. In
IEEE Intl. Conf. on Cloud Computing, pages 109–116,
2009.

[6] K. Johnson, S. Reed, and R. Calinescu. Specification
and quantitative analysis of probabilistic cloud
deployment patterns. In Hardware and Software:
Verification and Testing, volume 7261 of LNCS, pages
145–159. Springer, 2012.

[7] K. Sarda, S. Sanghrajka, and R. Sion. Cloud
Performance Benchmark Series: Amazon E2C CPU
Speed Benchmarks. Technical report, Stony Brook
University, 2010.

[8] A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, and
I. Sommerville. The cloud adoption toolkit:
supporting cloud adoption decisions in the enterprise.
Softw.: Practice and Exper., 42(4):447–465, 2012.

[9] A. Khajeh-Hosseini, D. Greenwood, and
I. Sommerville. Cloud migration: A case study of
migrating an enterprise IT system to IaaS. In IEEE
Intl. Conf. on Cloud Computing, pages 450–457, 2010.

[10] M. Klems, J. Nimis, and S. Tai. Do Clouds Compute?
A Framework for Estimating the Value of Cloud
Computing. In Designing E-Business Systems.
Markets, Services, and Networks, volume 22 of LNBIP,
pages 110–123. Springer Berlin Heidelberg, 2009.

[11] K. Kowalski and M. Beheshti. Analysis of Log Files
Intersections for Security Enhancement. In 3rd Intl.
Conf. on Information Technology: New Generations,
pages 452–457. IEEE Computer Society, 2006.

[12] Log2cloud tool 2012. http://webdiis.unizar.es/
GISED/?q=tool/log2cloud.

[13] D. A. Menascé and P. Ngo. Understanding cloud
computing: Experimentation and capacity planning.
In Computer Measurement Group Conference, 2009.

[14] Microsoft. Windows Azure Calculator, 2012.
http://www.windowsazure.com/en-us/pricing/

calculator/?scenario=full.

[15] A. Oliner, A. Ganapathi, and W. Xu. Advances and
challenges in log analysis. Commun. ACM,
55(2):55–61, Feb. 2012.

[16] Rackspace. Pricing and calculator, 2012. http://www.
rackspace.com/cloud/public/servers/pricing.

[17] J. Schaefer et al. Performance-aware design and
optimization of enterprise applications. In 6th Intl.
Conf. on Network and Service Management, pages
306–309, 2010.

[18] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and
M. Lindner. A break in the clouds: towards a cloud
definition. SIGCOMM Comput. Commun. Rev.,
39:50–55, 2008.

[19] E. Walker. The real cost of a CPU hour. Computer,
42(4):35–41, 2009.

[20] L. Youseff, M. Butrico, and D. Da Silva. Toward a
unified ontology of cloud computing. In Grid
Computing Environments Workshop, pages 1–10, 2008.

404

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

