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Abstract

Elasticity is a key characteristic of cloud platforms enabling

resource to be acquired on-demand in response to time-

varying workloads. We introduce a new elasticity manage-

ment framework that takes as input commonly used reac-

tive rule-based scaling strategies but offers in return proac-

tive auto-scaling. The elasticity framework combines reac-

tive and predictive auto-scaling techniques, and we discuss

the specification and performance of these individual com-

ponents. We present a case study, based on real datasets, to

demonstrate that our framework is capable of making ap-

propriate auto-scaling decisions that can improve resource

utilization compared to that obtained from a purely reactive

approach.

Categories and Subject Descriptors C.4 [Performance

of Systems]: Modeling techniques; G.3 [Probability and

statistics]: Time series analysis

General Terms Algorithms, Performance, Reliability

Keywords elasticity, predictive, auto-scaling, cloud com-

puting, platform-as-a-service

1. Introduction

Elasticity is an important feature of cloud platforms, ben-

efitting both cloud providers and end-users. For the cloud

provider, it can reduce server under-utilization whilst offer-

ing some guarantee of Quality of Service (QoS) for end-

users. Elastic capabilities offered by cloud providers are typ-

ically cast as rule-based algorithms that define scaling con-

ditions based on a target metric reaching some threshold.

This paper presents details of the implementation of a real-

time performance monitoring framework, Platform Insights,

which is responsible for making cloud platform auto-scaling

decisions. The proactive Platform Insights elasticity con-
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troller has been designed from the outset to extend the func-

tionality offered by reactive auto-scaling rules by generating

predictive models based on them. The particular contribution

of the paper is the design of an elasticity controller that:
• Spawns predictive auto-scaling models based on static

scale out rules
• Learns on-line and can be used right away
• Employs models operating on multiple time frames, to

introduce contextualization to auto-scaling decisions

The rest of the paper is organized as follows. Section 2

presents a summary of related work in this area. Section 3

gives details on the design of Platform Insights. Section 4

discusses the performance of the models internal to Platform

Insights. Section 5 describes a case study to validate the

approach and evaluate the resource provisioning decisions.

Concluding remarks are given in section 6.

2. Related Work

Rule-based methods for auto-scaling are offered by several

cloud providers such as Amazon [1] or third party tools

such as RightScale [2] or AzureWatch [3]. Moving beyond

reactive elasticity, the implementation of stable and accurate

proactive auto-scaling methods remains an open challenge.

Typically research into predictive elasticity techniques is

based on machine learning and control theory [4].

The elasticity controller implemented in Platform In-

sights is a hybrid approach combining reactive and predic-

tive auto-scaling techniques. Other hybrid controllers have

been proposed. In [5] the authors conclude that predictive

provisioning works well on typical days and that an addi-

tional reactive controller can be used to handle flash crowds.

In [6, 7] it is proposed to use a reactive controller to control

scale out and a predictive controller for scale in. In [7] the

authors find that SLA violations are reduced by a factor of

2 to 10 compared to a purely reactive controller. In contrast,

our reactive and predictive controllers can both trigger scale

in and out actions.

An autonomic controller based on Kriging surrogate

models was described in [8]. The models are built off-line

and subsequently updated and refined on-line. In contrast,

our hybrid controller can be used without off-line training.

The reactive controller can make auto-scaling decisions from

the start; the predictive controller takes advantage of online
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Figure 1. Scaling rule R1 meta-model.

incremental learning techniques and over time becomes able

to take over the auto-scaling decisions.

3. Design of Platform Insights

Application architects configure reactive threshold-based

scaling rules based on exposed service metrics, and, upon

submission to the system, Platform Insights configures and

initiates a reactive controller to handle the elasticity man-

agement. If the architect configures a scale out rule to be

used as the basis of a QoS condition that the system should

proactively try to maintain, then Platform Insights also starts

a predictive controller. In this case the architect also submits

a second rule, the details of which are given below.

The reactive and predictive controllers operate in a coor-

dinated manner; a discussion of this is presented in [9]. This

paper focuses on the specification and performance of the

models used in Platform Insights. Section 3.1 now describes

the format of the two rules that are configurable by applica-

tion architects. Following on, Sections 3.2 and 3.3 discuss

the reactive and predictive controllers respectively. Model

performance is discussed afterwards in Section 4.

3.1 Scaling Rules

Figure 1 shows a meta-model schematic for the scaling

rule R1. Rule R1 is used by the system to trigger scale in

or out whenever the min/max/sum (‘Scope’) in the tier of

the average/median (‘AggregateFunction’) value of some

‘Metric’(Q) on each instance over some ‘TimeWindow’(T1)

is greater or less than (‘Operator’) some specified threshold

‘Value’. Rule R1 also specifies a ‘Limit’on the minimum

(for scale in) or maximum (for scale out) number of in-

stances within the tier.

If the rule is a scale out rule to be used as the basis

for proactive auto-scaling, then a second accompanying rule

(R2) is also specified. Rule R2 allows the specification of

a metric representing workload (W ), such as the number of

requests; an aggregation function (currently only sum is sup-

ported); a time window (T2) over which to apply the aggre-

gation and to use as the one-step ahead prediction interval;

and a confidence level to compute confidence bounds on the

time series predictions.

3.2 Reactive Controller

At the core of our Platform Management Framework lies a

management bus, which is responsible for enabling com-

munication among various components. The management

bus is implemented using the standard Advanced Message

Queuing Protocol (AMQP) [10]. In the current prototype,

we have used Apache Qpid [11], which implements AMQP

and provides a message broker. Lightweight probes on the

various server instances publish monitoring data to the man-

agement bus. When a scaling rule (R1) is submitted, the re-

active controller subscribes for any relevant monitoring data

required to evaluate the rule. A complex event processing

engine is used to process the data. We use Esper [12] as it

is lightweight, can be easily embedded in a Java application,

and allows new queries to be registered dynamically after

the engine has started so that scaling rules can be configured

and set at any time. When the scaling condition is met, an

alert is triggered and an auto-scaling request is sent to the

Tier Decision Manager for assessment.

3.3 Predictive Controller

The predictive controller comprises 3 models: a time series

forecaster and 2 incrementally updateable Naive Bayes mod-

els. All monitoring data is aggregated on a per-tier basis, as

defined by R1 and R2, prior to use in the predictive models.

Such aggregation is acceptable assuming load is well bal-

anced across the tier. As platform components are assumed

to have load balancers this is reasonable. Two types of aggre-

gations are performed: 1) the two metrics representing work-

load and QoS (W and Q) are both aggregated according to

R1 to give values W1 and Q1, and 2) the workload metric

(W ) is aggregated according to R2 to give value W2. Esper

is used to perform these aggregations with the resulting val-

ues published over the management bus and made available

for the predictive models. The predictive models are imple-

mented using the Weka machine learning library [13].

Model 1, based on a time series forecast, takes the stream

of W2 values as input. When a new value is received the

model is updated and the next value is forecast. The Weka

time series analysis module transforms the data by removing

the temporal ordering of individual input examples to create

lagged variables. After the data is transformed a support

vector machine algorithm performs the regression.

Our algorithm monitors the input data stream at every

step t and if the value of W t

2 − W
(t−1)
2 lies outside 4 stan-

dard deviations of the mean then it assumes a severe work-

load burst occurred during the previous time interval. If a

burst is detected then the model will base its forecast on the

2-step ahead prediction from timestep t−1 rather than the 1-

step ahead prediction at timestep t. The forecast value is then
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compared to the 4-hour moving average value to classify the

general workload trend as increasing (>10% difference), de-

creasing (<-10% difference), or steady. Typically enterprise

workloads exhibit daily or weekly cycles [14] so changes in

demand should be observable over a 4-hour period. The con-

fidence interval of the returned forecast is scaled (to account

for differing time intervals) and used as input to Model 2

(see below) to estimate bounds on the number of server in-

stances expected in the next T2 time interval. These bounds

are used to validate auto-scaling requests output from Model

3. In summary, the output from Model 1 is the classification

of the workload trend along with bounds on the number of

servers expected in the next T2 time interval.

Model 2 takes as input W1, Q1 and the current number

of server instances (N ) running in the tier. It uses Q1 as

the basis for a binary classification into one of two classes:

meeting or violating QoS. We set the threshold on Q1 that

differentiates the two classes to be 95% of the target scale

out value specified in rule R1. Setting this threshold to

5% below the actual QoS target value reduces the risk of

under-provisioning, an approach also adopted by others [15].

Model 2 learns the relation between the current average

workload per server and the QoS value, and hence can be

used to run predictions of the number of instances needed

within the tier to ensure that the probability of QoS violation

remains below some value.

Model 3 is similar to Model 2, except that: a) the trend

output from Model 1 is used as an additional input, b) a

time delay is introduced between the workload and the bi-

nary QoS classification, and c) the input value of W1/N is

adjusted to account for scaling actions that took place dur-

ing this time delay. Typically a time delay of 30 minutes is

used, so that the workload is classified according to the QoS

value 30 minutes later. The output from Model 3 is an esti-

mate of the number of servers that should be operational in

order to meet QoS requirements over the next 30 minutes.

The difference between this value and the number of cur-

rently running servers yields the auto-scaling request. A 30

minute time window allows both time to make the decision

with confidence and time to provision additional servers.

The controller workflow is as follows. New W1 values

are placed in a queue to await future QoS classification. At

that time Model 3 predicts the future QoS classification of

W1, using as additional input the current value of N and the

current workload trend (from Model 1). If the probability of

QoS violation is too high (scale out) or too low (scale in), a

search on N is performed until this probability falls below

5%. The search on N is done from the current value in the

relevant direction (up/down according to scale out/in) until

the probability condition is met, or until the model starts to

lose confidence due to lack of training data, or until the limit

on the number of instances is reached. If this optimal value

of N differs to the current N then an auto-scaling request is

sent to the Tier Decision Manager for assessment.

Because Models 2 and 3 are both incrementally update-

able and learn on-line with each new data value, they can be

susceptible to outliers. If a new data point lies outside 4 stan-

dard deviations from the mean value then it is assumed to be

an outlier and is not used to update the model nor make an

auto-scaling decision; it is however used to update the statis-

tics so that trend changes will not be ignored for too long. We

have found this to be an acceptable policy in our research to

date: if the predictive controller is uncertain of what to do

then it does nothing, which is OK because the reactive con-

troller is always running as a stand-by.

For robust and effective elasticity control, the stability

of the controller is an important design aspect. One way in

which this can be achieved is through the use of effective

feedback control, such as proportional thresholding [16].

Our approach is to implement a threshold policy with hys-

teresis. More specifically, the search for a better value of N
only takes place whenever either the probability of QoS vi-

olation increases above 5.5% or drops below 1%. For scale

in decisions we implement a conservative policy requiring

the probability of QoS violation to remain less than 1%. For

scale out decisions the value of N such that the probability

of QoS violation is less than 4.5% is selected. As future work

we plan to investigate fuzzifying these thresholds.

The Tier Decision Manager receives all auto-scaling re-

quests from both the reactive and the predictive controllers.

It is responsible for coordinating the requests and assessing

them against the current number of running instances in the

tier together with any outstanding requests that are in still

in the process of being executed by the platform. Successful

requests are communicated to the platform for execution.

4. Prediction Model Performance

This section focuses on the performance of the individ-

ual models employed by the predictive controller using the

ClarkNet August trace [17] and the bursty FIFA 1998 World

Cup Access data trace [17, 18]. Figure 2 shows the time se-

ries of the number of requests per hour in the ClarkNet and

the FIFA World Cup data traces, together with the predic-

tions from Model 1. The figure shows that Model 1 is able

to make reasonably accurate predictions for these traces. It

does not predict the bursts in the FIFA trace but, by detecting

bursts as outliers and using a 2-step or 3-step ahead predic-

tion, nor are the forecasts unduly influenced by the burst. We

find that 80% of the predictions, even on the bursty FIFA log

traces, fall within 17% of the actual value.

For both the ClarkNet and FIFA World Cup traces, the

Model 1 workload trend classification performance is given

in Table 1. Increasing and decreasing trends are correctly

classified more than 80% of the time for the ClarkNet trace.

The performance is not so good on the FIFA trace with

correct classifications for decreasing and increasing trends

at 62.4% and 70.5% respectively. Most of the misclassifi-

cations result in trends being labelled as steady. The over-
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Figure 2. Hourly aggregated time series for two real data

sets together with predictions from Model 1.

Table 1. Classifications of workload trends.

Predicted Classification:

Decreasing Steady Increasing

ClarkNet Decreasing 80.5% 17.3% 2.2%

ClarkNet Steady 22.2% 59.8% 18.0%

ClarkNet Increasing 0.7% 17.7% 81.6%

FIFA Decreasing 62.4% 35.1% 2.5%

FIFA Steady 15.6% 66.8% 17.5%

FIFA Increasing 4.1% 25.3% 70.5%

laps between increasing/steady and steady/decreasing are

not surprising since (in the current implementation) hard

thresholds at ±10% are used.

This trend information is used by Model 3 to introduce

contextualization in making auto-scaling decisions. For ex-

ample, if CPU utilization is 70% it may be more likely to in-

crease to 80% if the trend is generally increasing than if the

trend is decreasing. Model 3 performance has been assessed

within the context of an auto-scaling simulation experiment

(details in Section 5 below). Figure 3 shows the distributions,

at the end of the trace, of the probability that the QoS will

be violated within the next 30 minutes for a range of work-

load values according to the workload trend. The Model 2

probability distribution of QoS violation is also shown for

comparison. There is a difference between the probability

distributions, and, as expected, if the trend is increasing then

the 5% probability of violation occurs at a lower workload

value than if it is decreasing.

Figure 4 plots the number of requests per unit time inter-

val (2 minutes in this case) yielding a 5% probability of QoS

violation within 30 minutes for the duration of the simula-

tion. Again, Model 2 data is shown for comparison. The val-

ues vary at the start but then settle down and are reasonably

steady for the last half of the simulation. We have conducted

numerous experiments and checked the variation in these

distributions. The distributions clearly depend on the work-

load trend classification and, as explained above, there can
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Figure 3. Model 3 probabilities of QoS violations occurring

within 30 minutes by workload trend at the end of the trace.
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Figure 4. Number of requests per 2 minute interval giving a

5% probability of QoS violation within the next 30 minutes

for different workload trends throughout the simulation.

be overlap between increasing/steady and steady/decreasing.

This is frequently reflected by the steady workload trend

having more variability with time. However, we consistently

find that for increasing trends the 5% probability of violation

occurs at a lower workload value than for decreasing trends.

The discrimination between these two trends is of particular

interest because it is expected that auto-scaling decisions are

more likely to be made during the time periods when work-

load is substantially increasing or decreasing.

This section has examined the performance of individual

models employed by the predictive controller. The next sec-

tion presents a case study illustrating how the reactive and

predictive controllers operate together to scale the platform

in and out as the workload demand changes.

5. Case Study

This section presents the results of an auto-scaling simula-

tion experiment to demonstrate the merit of our hybrid elas-

ticity controller. The FIFA 1998 Word Cup Access logs to

simulate driving the SPECjEnterprise2010 benchmark and

the focus is on the platform application server tier.

The log files were summarized to extract the number of

requests arriving every 2 minutes. These values were scaled

by a factor of two and used to simulate driving the SPEC-

jEnterprise2010 benchmark. The benchmark was run with
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different loads and the response times were observed to be

in excess of the target time of 2 seconds when the CPU uti-

lization went beyond 80%. Rules were set as follows. Scale

out: if the minimum median value of CPU utilization over

the past 40 minutes is > 80% then increase the number of

instances by 1; Scale in: if the maximum median value of

CPU utilization over the past 60 minutes is < 50% then de-

crease the number of instances by 1. The provisioning of a

new instance is assumed to take 10 minutes, a reasonable

estimate given that four major public cloud providers can

allocate new instances with an average scaling latency be-

low 10 minutes [19]. The QoS condition was extracted as:

the minimum median CPU utilization over a window of 40

minutes must be less than 80%.

The simulations were run using only the reactive con-

troller and using the hybrid approach; auto-scaling results

are shown in Figure 5. The reactive controller running alone

is initially able to scale resource. However, from day 24 on-

wards, as the number of requests continues to increase, the

reactive controller is less well able to scale the system in.

This is because the median CPU utilization does not drop to

below 50% across the whole tier. As the number of server

instances in the tier increases, a larger drop in workload is

required before the scale in condition will be met, resulting

in less efficient use of resource. The implication is that static

threshold rules for scale in can be difficult to configure to

achieve efficient resource utilization. This highlights the ad-

vantage of operating a proactive controller. In scale out sce-

narios, a reactive controller could make the decision earlier

if a modified threshold was used, but appropriate threshold

setting remains trial and error. In scale in scenarios, our elas-

ticity controller determines the optimal number of servers at

any given time and is therefore not constrained to wait for

utilization to drop to some value across the whole tier.

Even at high workloads, our hybrid controller continues

to be capable of dynamically scaling the system in accor-

dance with the workload. The maximum number of allowed

instances was set to 40. This maximum value was never re-

quested, even during the pronounced bursty periods, thus

demonstrating the stability of the controller; the only pos-

sible exception is day 23 of the trace.

A magnification of Figure 5 at day 23 is displayed in Fig-

ure 6, revealing an unusual workload trend on this day. Most

of the scale in decisions are generated by the reactive con-

troller (decision points marked by blue circles). Therefore

what looks like unstable scaling behaviour in Figure 5 is pri-

marily the desired response according to the configured scal-

ing rules. The shortest timespan between scaling decisions is

60 minutes, which may be acceptable given many providers

charge on a per-hour basis. In the future cost-awareness will

be incorporated into the scaling decisions to enable the de-

termination of the minimum cost-effective time period over

which resource may be released and re-provisioned (or vice-

versa). Previous research shows this could help improve re-
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Figure 5. Auto-scaling simulation using reactive controller

only and the hybrid controller. The number of requests per

two minute interval is shown by the grey line (right axis).
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Figure 6. Zoom in on day 23 of auto-scaling simulation.

source utilization and efficiency [20]. In this test case, the

hybrid controller yielded a QoS violation rate of 0.4%, of

which a third of these violations occurred during day 23.

Figure 7 presents the cumulative distribution of CPU uti-

lization across all server instances throughout the duration

of the simulation. It further demonstrates the improved re-

source utilization achieved by the hybrid elasticity controller

over the purely reactive one. Using the hybrid controller

there are fewer instances overloaded with CPU utilization

>80% and also fewer instances underloaded with CPU uti-

lization <50% than using the reactive controller alone. The

difference is even more stark if we consider that the reactive

controller will result in 37% of instances with CPU utiliza-

tion <60% whereas this is kept to under 13% by the hybrid

controller.

6. Conclusion

In this paper we presented a new hybrid elasticity controller

that extends the capabilities of commonly used reactive scal-

ing strategies to offer proactive auto-scaling. The controller

extracts the scale out condition and builds incrementally up-

dateable predictive models to enable the system to proac-

tively scale out before this condition is met. The predictive

models are used to calculate the minimum number of server

instances required during the next 30 minutes in order to

have less than 5% chance of reaching the scale out (equiva-

lently QoS) condition. This methodology allows the system

to scale in as well as out.
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server instances during the auto-scaling simulation.

The performance of the elasticity controller was pre-

sented both through discussions of individual model per-

formance and through an auto-scaling experiment in which

a real data set was used to simulate driving an enterprise

benchmark. The predictive models operate over multiple

time frames to introduce contextual awareness to the auto-

scaling decisions, and whenever they lack certainty, auto-

scaling decisions are left to the reactive controller. The case

study demonstrated that, compared to a purely reactive con-

troller, our controller is able to make better provisioning

decisions for an application server tier, yielding few QoS vi-

olations and maintaining consistently high CPU utilization.

For future work we plan to integrate a controller designed

specifically to handle flash crowds; handle multiple QoS ob-

jectives; test the controller with more workload profiles and

on other tiers; integrate an algorithm to detect change in

workload mix to enable faster learning of new relationships

between the number of requests and the QoS metric; incor-

porate cost-awareness in the scaling decisions; and to de-

velop a higher-level controller to correlate monitoring data

and auto-scaling requests across tiers in order to provide a

fully integrated elasticity management framework.
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