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ABSTRACT
In the context of cloud computing, elasticity is the capacity to scale
computing resources up and down easily. Currently, most Plat-
forms as a Service (PaaS) manage application elasticity within a
single cloud provider. However, the not so infrequent issueof cloud
outages has become a concern that hinders the availability of cloud-
based applications. The most promising solutions to this issue are
those based on the federation of multiple clouds. In this paper, we
present aMulti-Cloud-PaaSarchitecture. We show how this archi-
tecture can be used for managing elasticity across multiplecloud
providers.

Categories and Subject Descriptors
H.4 [Cloud Computing Architecture]: Multi-Cloud; D.2.11 [Software
Architectures]: Data abstraction—Elasticity, Dynamic Load Bal-
ancing

General Terms
Design

Keywords
Multi-Cloud, PaaS, Elasticity, High availability, Dynamic load bal-
ancing.

1. INTRODUCTION
Cloud computing allows companies to respond to business op-

portunities more quickly, without the cost of buying, managing,
and maintaining their own computing infrastructure. Cloudcom-
puting brings a way to innovate and transform Information Tech-
nology (IT) into a set of flexible services that enable a more agile
approach than what is possible with traditional computing models.
The Infrastructure as a Service (IaaS) layer orchestrates virtualized
infrastructures and provides a better utilization of resources (cpu,
disk, memory, network, etc.). On the top of IaaS, the Platform
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as a Service (PaaS) layer supports the development and manage-
ment of applications. The Software as a Service (SaaS) layeris
the application model deployed with PaaS. Cloud computing is a
delivery model for IT that provideselasticity1, agile services in an
on-demand and pay-as-you-go fashion. Due to its flexibilityin pro-
visioning and using services, Cloud computing can optimizeIT in-
vestment [2], applicationavailability2 and scalability.

These characteristics and benefits make Cloud computing an es-
sential part of the IT infrastructure of many companies. However,
as [14] and [15] have already noted, the Cloud computing model
is not without service unavailability. A series of news [16,17, 18]
and papers [19, 20, 15, 21] have pointed cloud provider outages.
For instance, Table 1 summarizes a list of recent outages classi-
fied by cloud provider. Table 1 underlines only the outages that
have an high impact and that put services offline for at least one
hour. According to a recent report by the International Working
Group on Cloud computing Resiliency [22], a total of 568 hours of
downtime at thirteen well-know cloud services since 2007 caused
financial damage of more than US$71.7 million. The average un-
availability of cloud services is 7.5 hours per year, amounting to
an availability rate of 99.9%, according to the group preliminary
results. These results are far from the expected reliability of mis-
sion critical systems (99.999%). As a comparison, the service av-
erage unavailability for electricity in a modern capital city is less
than 15 minutes per year [23]. The impact of 0.099% unavail-
ability costs US$71.7 million. Besides this economic impact, the
downtime also affects millions of end-users. Of course, downtime
costs money and dammage, unfortunately protect systems against
downtime with 99.999% of availability is not free. Some cloud
providers [24, 25, 26] propose several distributed data centres to
minimise failure. However, vendor lock-ins (switching cost, etc.)
are still a potential risk in the context of a single cloud provider.
Additionally their solutions are not effective when all data centres
are down. Although most cloud providers today claim to bring
availability, but in reality, it is reasonable to assume that even ma-
jor players [24, 25, 27, 26, 28] have faced availability problems.

In addition, many criteria [29, 30] can be taken into account
when choosing the right platform, since most of the time no single
cloud provider can meet all the needs. Federating multiple clouds
and brokering resources between these different clouds is asolution
of choice for these specific needs [31, 32].

To overcome these difficulties, we propose in this paper MCP,
a Multi-Cloud-PaaS solution that focuses on the managementof

1Elasticity is the capability to rapidly provision, in some cases au-
tomatically, to quickly scale out, and rapidly release resources [1].
2 Availability is a degree to which applications and resources are in
an operable and committable state at the point in time when they
are needed [3].
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Table 1: List of Cloud Outages

Cloud outages

Cloud Providers What happened & Why When What impact

Amazon

[4] The event was triggered during a large scale electrical storm which swept
through the Northern Virginia area.

29 June 2009 Offline for 5 hours and 30 minutes. Com-
panies affected: Netflix, Instagram, Pinterest,
Heroku.

[5] The loss of power was caused by an electrical ground faultand short circuit in
a major power distribution panel that interrupted power to some instances in this
particular availability zone.

4 and 8 May 2010 Offline for 7 hours. Data loss for small num-
ber of users.

[6] The problems are focused on Elastic Block Storage (EBS),which provides
block level storage volumes for use with Amazon EC2 instances.

21 April 2011 Offline for more than 10 hours. Companies
affected: reddit, Quora, HootSuite.

[7] A power outage at an Amazon Web Services data center in North Virginia
knocked some customers offline.

30 June 2012 Offline for more than 5 hours. Companies
affected: Netflix, Instagram, Pinterest, Hot-
Suite, Heroku.

[8] The Amazon Elastic Load Balancing (ELB) Service down in US-East region
affected the applications using the ELB.

25 December 2012 Offline for more than 23 hours. Companies
affected: Netflix.

Windows Azure

[9] A networking problem during a routine software update interfered with hosted
project deployment.

13 March 2009 Offline for 22 hours.

[10] It is caused by a software bug. The time calculation was incorrect for the
leap year.

29 February 2012 Offline for more than one hour.

Rackspace [11] A power outage at a data center that caused it. 29 June 2009 Offline for about one hour.

Heroku [12] Amazon outage affected Heroku. 29 June 2009 -

Salesforce.com [13] No explanation of what went wrong. 4 January 2010 Offline for about one hour and 15 minutes.

elasticity through multiple cloud providers using dynamicprovi-
sioning. The MCP architecture is composed of load balancer,node
provisioning, monitoring, workload manager and controller com-
ponents. MCP helps developers to create elastic applications by
reducing the complexity of managing multiple different cloud ar-
chitectures.

The remainder of this paper is organized as follows. In Section 2
we present the motivation of our work. Next, Section 3 describes
the architecture promoted by our solution, the integrationwith ex-
isting IaaS/PaaS, and the implementation details of our platform.
Then, Section 4 describes some preliminaries evaluation ofthe load
balancer. Section 5 presents and discusses the limitationsof this
work. Section 6 compares our platform with the state-of-the-art,
while Section 7 concludes this paper and presents future work we
intend to address.

2. MOTIVATION
As a motivating scenario that will be used later in Section 4,

let us consider an IT company in charge of a3 network in a bank
with several agencies. Let us suppose that each camera captures
at least one image everyδt seconds and sends it in JPG format to
a remote server. An application is responsible for checkingif the
camera sends the image on time and if the JPG format is correct.
The application generates an alert message if the camera does not
work properly. The IT company deploys the application on a sin-
gle cloud provider. Fault-tolerance, high availability, resources low
cost, and scalability are essentials prerequisites for this application.
Thereby, in order to meet the application requirements, thefollow-
ing are questions that the IT company has. How to choose the right
cloud platform that meets the application needs? What if theentire
data center looses electrical power? What if the data centeris de-

3CCTVhttp://en.wikipedia.org/wiki/Closed-circuit_television

stroyed by floods or fire? What if the data center has another kind
of outage? At a first glance, these questions point out the limits of
what a single cloud provider can deliver. For this reason, manag-
ing elasticity across multiple cloud providers is the better way to
guarantee high availability when outages occur.

To cope with this variety of requirements and needs, we advocate
what the following three main challenges need to be addressed in
order to manage elasticity across multiple cloud providers.

High availability.
To ensure the availability despite these outages, multipleinstances

of the application should be deployed and launched on different
cloud providers with a load balancer service to distribute requests
among instances of the application.

Automate elasticity through multiple clouds.
With a single cloud provider, when an outage takes in all data

centres, resource provisioning is not possible. Cloud elasticity is
essential to accommodate the scale (up and down) on demand. A
possible solution to avoid outages is to automate the cloud elasticity
across different cloud providers.

Transparency.
Each cloud provider has his own API to manage elasticity. The

aim is to provide an abstraction support to hide certain aspects of
elasticity management to the application developers so that they
need only be concerned with the design of their applications.

This paper provides a solution to these challenges, called Multi-
Cloud-PaaS (MCP).

3. MULTI CLOUD PAAS DESIGN
In this section we present the MCP platform. We begin by pre-

senting the platform architecture. Next, we describe the implemen-
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tation of the MCP platform and how the existing IaaS/PaaS solu-
tions are integrated.

3.1 Architecture
Figure 1 gives an overview of the architecture of MCP. This

architecture describes all the components that automate elasticity.
These include full instruments for monitoring workloads, resources
provisioning, load balancing, and all controller servicesneeded to
manage elasticity. In order to avoid a single point of failure, the
MCP architecture should be deployed at least in two different cloud
providers (cf. Figure 1). MCP architecture deployment is shown in
Figure 1, in which theload balancer, controller, node provisioning,
workload manager, PaaS deployment, andSaaS deploymentcom-
ponents are deployed in cloud A. The cloud B contains the replica-
tion of these components. Themonitoringcomponent is deployed
with the application in cloud 1 to n (cf. Figure 1). Except the
monitoringcomponent, there are two components per application
deployed.

3.1.1 Load Balancer
The application deployed with MCP is replicated on multiple

clouds (APP in Figure 1). Theload balancer(LB) component
routes requests to application instances. The LB dispatches load
among different cloud providers. Before distributing loadthe LB
asks for system information (broadcasts an alive-request-message,
indicating that it is running), which from the LB point of view is
a collection of application instances available for execution. The
current implementation of the LB supports the Round Robin algo-
rithm [33]. An API is proposed to extend this default behaviour
with other algorithms. A Uniform Resource Locator (URL) is as-
sociated with one instance of LB. Each application deployedwith
the MCP has two instances of LB. The two LB instances belong to
the same group. Although, only one instance of LB is active, the
second one is passive.

3.1.2 Controller
Thecontroller component multiplexes workloads onto an exist-

ing infrastructure, allows for on-demand allocation of resources to
workloads. The system state is managed by thecontroller com-
ponent. By state, we mean that information retained in one com-
ponent that describes something (As example: a small table kept
on each instance of LB to associate network addresses with the
textual names of available hosts), or is determined by something.
The system state offers the potential for improving the coherency,
and reliability of the system. For components to work together ef-
fectively, they must agree on common goals and coordinate their
actions. This requires each part to know something about theother.
For example, thenode provisioningkeeps a table of available re-
sources: If the developer wants to deploy an application on the
resource, the controller can notify thenode provisioningto allocate
new resources for the application when the available resource is not
sufficient. The second potential advantage of the system state is re-
liability. If information is replicated at several cloud providers and
one of the copies is lost due to a failure, then it may be possible to
use one of the other copies to recover the lost information. Com-
pared to theworkload managerandnode provisioningcomponents,
thecontroller takes decision in the system. The Controller compo-
nent should be self-adaptive in order to respond in a coherent and
timely manner to changes in environment, failures of components.

3.1.3 Provisioning

The Node Provisioning (NP) component allocates and deallo-
cates IaaS resources as needed. To accommodate the current or pre-
dictive workloads, the NP provides the necessary resourcesneeded.
When resources are no longer used or underutilized, they arere-
leased. The decision for allocating and deallocating comesfrom
thecontroller component. The resource allocation can be provided
from different cloud providers. The ability to provide resources
dynamically and quickly from different clouds is essential.

3.1.4 Monitoring
Themonitoringcomponent provides metrics about the applica-

tion process and the system on which it is running. Information
about currently executing process as well as the system thatthe
monitoring service can be gathered. Themonitoring component
provides the following information:

• os: name, version, kernel, processes, memory, swap, resource
limits, uptime and logins.

• cpu: model, name, family, per cpu and average usage.

• filesystem: mounted devices, disk usage, filesystem proper-
ties and usage.

• network: usage, bandwidth, interface, routes and connection
status.

• process: per process information for cpu, memory, environ-
ment, credentials, arguments and other information.

The monitoringcomponent notifies on any change in state of the
application. The metrics collected in a time interval are sent to the
Workload Manager component for analyzing.

3.1.5 Workload Manager
The Workload Manager (WM) component provides some event

processing functionality [34]. All events are processed toextract
drift indicators (DI). An example of DI can be a CPU consumption
is greater than 90% for a period of 2 minutes. The WM is centered
on DI tracking perform filtering, transformation, and most impor-
tantly aggregation of events. All the metrics (events data)sent by
the monitoringcomponent are continuously analyzed in terms of
drift indicators that are expressed by event rules, and actsupon
opportunities and threats in real time, potentially by creating de-
rived events and forwarding it. One of WM major goals is to finda
symptom and analyses it to find it root cause. The WM uses a tech-
nique called eventcorrelation4 to examine symptoms and identify
groups of symptoms that have a common root cause. As an ex-
ample of event correlation, WM takes multiple occurrences of the
same event, examines them for duplicate information, removes re-
dundancies and reports them as a single event. So fifty ”memory
consumption greater than 98%” alerts become a single alert that
says "memory consumption greater than 98%, fifty times". The
WM looks for particular patterns among the events that it monitors.
When a drift occurs, the WM reports it to thecontroller compo-
nent. The ability to derive instant insights into the operations of the
resource provisioning is essential. Thus, the dynamic resource al-
located and deallocated are important ingredient to build aplatform
for elastic applications. This feature allows the MCP to handle an
increasing volume of transactions, services and persistence data.

4See a Computerworld article described event corre-
lation in network and system management athttp:
//www.computerworld.com/s/article/83396/
Event_Correlation?taxonomyId=16&pageNumber=1.
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Figure 1: Overview of the Multi-Cloud-PaaS Architecture.

3.1.6 PaaS Deployment Service
This service deploys an instance of the Multi-Cloud PaaS on the

target cloud provider. This feature is based on our previouswork
that deals with a generic solution for deployment in distributed en-
vironments [35]. The Multi-Cloud PaaS is deployed as a WAR file.

3.1.7 SaaS Deployment Service
This service allows to dynamically deploy/undeploy SaaS ap-

plications running on the Multi-Cloud PaaS nodes. The SaaS de-
ployment service should take into account many complex factors
(design of application’s architecture, database, etc). Itmust be able
to handle hundreds of simultaneous customers.

3.2 Implementation
This section describes how the implementation of our MCP plat-

form is achieved. MCP relies on FraSCAti [36] that is an open
source platform for deploying and executing service-basedapplica-
tions. FraSCAti provides a component-based programming model
which simplifies the development, assembly, deployment andman-
agement of composite applications. In addition, FraSCAti provides
a unified way to build applications. Each component of the MCP
architecture is implemented as an SCA component and these com-
ponents are assembled together to form the platform. The MCPcan
run in a distributed fashion and managed as virtual unit platform.
The Figure 2 shows the SCA architecture of MCP.

3.2.1 Provisioning
The NP provides an abstraction layer for compute and storage

clouds. This component provides a unified way to the MCP to use
the resources as needed. The compute and storage clouds are ex-
posed as services. To achieve resource provisioning acrossdiffer-

Figure 2: MCP SCA-Based components.
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ent cloud providers, the NP component uses JClouds5. JClouds is a
Java API for compute and storage through multiple clouds. Weuse
this API because it supports many Clouds6.

3.2.2 Monitoring
Application can run in standalone or distributed fashion depend-

ing on their design. The main question is how to monitor a highly
distributed and heterogenous environment? The Monitoringcom-
ponent exposes services via REST and JMS to monitor a distributed
environment. This component encapsulates a lower-level API called
SIGAR developed in C. The Hyperic SIGAR API [37] was chosen
because of its cross-platform support and (relatively) small compu-
tational footprint. Monitoring application activity thatoccurs out-
side of the JVM is not possible using pure Java. The Monitoring
component uses a convenient way to access native libraries from
pure Java code, using a C binding provided by FraSCAti. The con-
sumer of the services exposed is theworkload managercomponent
or can be an external API running outside the MCP. Each appli-
cation deployed with the MCP is automatically monitored. The
monitoringcomponent uses the aggregation mechanism to monitor
standalone or distributed applications.

3.2.3 Workload Manager
Related to the events received from an inboundmonitoringcom-

ponent, how events can be woven together to pull out the rightin-
formation? This is accomplished through Complex Event Process-
ing (CEP)7. To achieve this, we use DiCEPE, a Distributed Com-
plex Event Processing Engine we have presented in our previous
works [39]. The particularity of DiCEPE is the integration of CEP
engines in distributed systems, and the fact that they can beex-
posed via various communication protocols. Event patterns, as the
name suggests, allow to define, via expressions, various matching
rules that can be applied to incoming events. For instance, atem-
poral operators can be used to compare inbound events and check
whether they arrived in the anticipated order. Patterns enable us to
have very fine-grained control over how events are evaluated. Over-
all, the WM references themonitoringcomponent and also exposes
services.

3.2.4 Load Balancer
As mentioned below each application has one instance of LB. It

is offering high availability, load balancing, and proxying for TCP
and HTTP-based applications. To realize the LB component we
have implemented a non-blocking server in order to have scalabil-
ity and performance. Non-blocking servers are not threadedand
they use an IO loop and events to handle requests. In order to take
full advantage of non-blocking technology, all of our IO andnet-
work calls have to be non-blocking as well. The LB implements
an event-driven, single thread model which enables supporthigh
number of simultaneous connections at very high speed. Multi-
process or multi-threaded models can rarely cope with thousands
of connections because of memory limits, system scheduler limits,
and lock contention everywhere. Event-driven models do nothave
these problems because implementing all the tasks in user-space al-
lows a finer resource and time management [40]. To achieve theim-
plementation of the LB component, we use the Netty framework8.
For dynamic load balancing capabilities, a group membership ser-

5http://www.jClouds.org/
6http://www.jClouds.org/documentation/reference/supported-
providers/
7CEP: Computing that performs operations on complex events, in-
cluding reading, creating, transforming, or abstracting them. [38]
8https://netty.io

vice is used. To avoid a single point of failures, the LB also needs
to be replicated. Hence, each application has a DNS name [41](for
example: appname.mcp.net which is associated) with two LB in-
stances. The application deployed with the MCP is associated with
the group of LB as shown in Figure 3, specifically with the active
instance of the LB. When the active instance of LB fails, the pas-
sive instance of LB detects the failure and takes over as the active
LB. The passive instance will check if the previous active instance
has actually failed, and if so, it report to thecontroller component
for instantiating a new passive LB.

Figure 3: Load Balancer group: active-passive.

3.2.5 Controller
All components in the MCP architecture are registered with the

controller component. Thecontroller component is responsible for
taking decisions and managing the behaviour at runtime of each
component according to the requirements. All requests handled by
a Controller component are processed as transactions. The engine
transaction is implemented for the specific needs of the MCP archi-
tecture. The goal of transactions is to ensure that all components
managed by thecontroller remain in a consistent state when they
are accessed by multiple transactions and in presence of crash. The
controller must guarantee that either the entire transaction is car-
ried out and the results recorded in permanent storage or, inthe
case that one or more of them crashes, its effects are completely
rollbacked. Each transaction is created and managed by a coordi-
nator. Two well-known problems of concurrent transactionscan be
mentioned: i) lost update and ii) inconsistent retrievals.To avoid
these problems we use a serially equivalent9 executions of trans-
actions. The use of serial equivalence as a criterion for correct
concurrent execution prevents the occurrence of lost updates and
inconsistent retrievals. Thecontroller component is the core of
elasticity management, it is made to tolerate failures by the use of
redundant components.

3.3 Integration with existing IaaS/PaaS
We report on the existing cloud environments on which the MCP

platform has been deployed. The MCP platform is actually de-
ployed on ten target cloud environments that is publicly acces-

9serial equivalence: if each of several transactions is known to
have the correct effect when it is done on its own, then we can infer
that if these transactions are done one at a time in some orderthe
combined effect will also be correct [42].
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sible on the Internet10. The deployment is done with IaaS/PaaS
providers. With IaaS, resources are provisioned from Windows
Azure11, DELL KACE12, and Amazon EC213, we installed a PaaS
stack composed of Linux distribution, a Java Virtual Machine, a
web container and FraSCAti. We also provide PaaS resources from
CloudBees14, OpenShift15, dotCloud16, Jelastic17, Heroku18, App-
fog19, Eucalyptus private Cloud. The MCP platform extends an
experiment that was presented in our previous work [43].

4. VALIDATION
In this section, the preliminary experiments of the MCP archi-

tecture focuses on the Load Balancer performance. In fact, the LB
distributes incoming requests that can introduce overhead.

4.1 Load Balancer Overhead
Considering our scenario mentioned in Section 2, we are spe-

cially interested in the manager that monitors the video cameras.
Since the cameras send the images capture to the server, our man-
ager can monitor forSEND events. To evaluate our LB, we try to
focus on the introduced overhead. To focus on the overhead intro-
duced by the LB, with Internet lag, all the benchmark experiments
were performed with two different cloud providers. The LB and
the application were deployed respectively on Windows Azure and
DELL KACE.

To evaluate the overhead of the LB instance, 10,000 images were
sent to the application. We evaluated two cases of this scenario
where theSEND event and images were checked: i) directly with
the Application, and ii) with the LB. The benchmark was executed
ten times on each of the two cases. In Table 2, we present the
results of the average execution time for each case, as well as the
mean overhead introduced by the LB run-time.

Table 2: Execution time and overhead
Implementation Avg. exec. time LB overhead

APP 13.93 sec -
APP + LB 14.10 sec 1.45%

Overall, these benchmarks show that there is a small overhead
introduced by adding the LB layer, the execution time is still ac-
ceptable and the benefits provided by the MCP platform (cf. Sec-
tion 3) outweigh the difference in the execution time.

4.2 Performance
In order to evaluate the performance of our load balancer com-

ponent, we use a benchmark tool called inject3220. Using this tool,
we generate134, 021 requests and continuously connects to one
instance of LB to fetch the selected object from the server inloops

10available at http://multicloudpaas.soceda.cloudbees.net/
11https://www.windowsazure.com
12https://www.kace.com/
13http://aws.amazon.com/ec2/
14http://www.cloudbees.com/
15https://openshift.redhat.com
16https://www.dotcloud.com/
17http://jelastic.com/
18http://www.heroku.com/
19http://www.appfog.com/
20Available at http://1wt.eu/tools/inject/

for 156, 000 ms. Statistics are collected every second, so we have
156 measures. The network bandwidth is measured at the HTTP
level and does not account for TCP acks nor TCP headers. This
tool measures the load balancer performance with three important
factors:

• The session rate: This factor directly determines when the
load balancer will not be able to distribute all the requestsit
receives. It is mostly dependent on the CPU.

• The session concurrency: Generally, the session rate will
drop when the number of concurrent sessions increases. The
slower the servers are, the higher the number of concurrent
sessions for a same session rate.

• The data rate: This factor generally is at the opposite of
the session rate. It is measured in Megabytes/s (MB/s), or
sometimes in Megabits/s (Mbps).

Table 3: Performance benchmark results
Session rate Concurrency Data rate Failures Avg. time

850 283 4560 kB/s 0 3 ms

To focus on the performance of our load balancer component
in real condition, the benchmarks were performed on a Windows
Azure Cloud, using a Virtual Machine with a 2.0 GHz AMD Opteron
(tm) processor, 3.5 GB RAM, Ubuntu Server 12.0.4 LTS 64 Bit
and Oracle Java 6. As noticed in Table 3,134, 021 requests were
send to the load balancer, the session rate is 850 HTTP requests per
second, with 283 concurrent connections which have the datarate
(HTTP headers+data only) of 4560 kB/s. All HTTP requests were
processed without error. Of course this takes into account the added
work induced by network traffic. The load balancer has at average
283 concurrent sessions. This number is limited by the amount of
memory and the amount of file-descriptors the system can handle.

Our LB is software-based21 (Layer-7 of the OSI model) load bal-
ancer. Obviously, the best performance can be reached by adding
the lowest overhead, which means processing the packets at the
network level. One of the most common questions when compar-
ing hardware-based to software-based load balancers is whysuch a
gap between their session count exists. In fact, it depends whether
the load balancer has to manage TCP/IP stack or not. TCP/IP
stack requires that once a session terminates, it stays in the table
in TIME_WAIT state long enough to catch late retransmits, which
can be seen several minutes after the session has been closed. After
that delay, the session is automatically removed [44]. The sessions
in this state do not carry any data and are very cheap. Since they
are transparently handled by the OS, a proxy never sees them and
only announces how many active sessions it supports. But when
the load balancer has to manage TCP, it must support very large
session tables to store those sessions.

Overall, given the low resources used by the LB, the results ob-
tained in Table 3 are satisfactory.

5. DISCUSSION AND LIMITATION
This section presents and discusses the evaluation in Section 4

and the limitation of this work. Our preliminaries evaluation only
21Layer-7 load balancing involves cookie-based persistence, URL
switching and such useful features (application availability and
scalability).

ha
l-0

07
90

45
5,

 v
er

si
on

 1
 - 

7 
M

ar
 2

01
3



focus on the LB component. In fact, the LB distributes incoming
requests that can introduce overhead. What we expect from this
evaluation is that the overhead introduced by the LB should be neg-
ligible in order to ensure acceptable response time. As reported in
Section 4, the overhead introduced is small and the performance of
the LB is also satisfactory. We assume that other aspects of evalua-
tion should be taken into account to validate the MCP architecture.

Currently, the algorithm strategy that our LB uses is round-robin.
However, there are other sophisticated load balancing strategies [45,
46] that are not yet tested. Therefore, there is a need to find the load
balancing technique that can improve the performance by balanc-
ing the workload across all the nodes in a multi-cloud environment.
The application replicated through the multi cloud do not interact
with data base. In fact, the mechanism of data replication onmulti
cloud is not taken into account in this work. Several cloud providers
have different and increasingly more advanced services forelastic-
ity and also replication, these features are also not necessarily com-
patible. The solution based on multi cloud tends to be constrained
by the least common denominator of features provided. Also,ex-
ploitation of new specific features will not necessarily be accessible
through a multi cloud solution or their exploitation may be delayed
since the multi cloud solution needs to be updated accordingly.

6. RELATED WORK
This section presents some of the related work from different

fields of research that are relevant to our contribution. Manag-
ing elasticity across multiple cloud providers is a challenging is-
sue. However, although managed elasticity through multiple clouds
would benefit when outages occur, few solutions are supporting it.
For instance, in [32] the authors present a federated cloud infras-
tructure approach to provide elasticity for applications,however
they do not take into account elasticity management when outages
occur. Another approach was proposed by [47], which managedthe
elasticity with controller and load balancer. However, their solu-
tion does not address the management of elasticity through multiple
cloud providers. The authors in [48] propose a resource manager
to manage application elasticity. However their approach is spe-
cific for a single cloud provider. Amazon EC2, Windows Azure,
Jelastic already provide a load balancer service with a single cloud
to distributed load among virtual machines. However, they do not
provide mechanism to allow LB across multiple cloud providers.
Different approaches of dynamic load balancing have been pro-
posed in the literature [49], [50], [51], however they do notprovide
a mechanism to scale the load balancers themselves. The authors
in [52], [53] have explored the agility way to quickly reassign re-
sources. However, their approach do not take into account a multi
cloud environment.

7. CONCLUSION
This paper presents a Multi-Cloud-PaaS architecture to manage

elasticity across multiple cloud providers. Related to theInter-
Cloud Architectural taxonomy presented in [54], our work can be
classified into the Multi-Cloud service category. We surveyed each
of the concepts related to manage elasticity across multiple clouds
and pointed out problematics. To address these problems, this pa-
per proposes an architecture, describes the interactions between
each component of this architecture. The purpose of the Multi-
Cloud-PaaS architecture presented in this work is to demonstrate
the feasibility of our approach. The integration with existing solu-
tions and the evaluation results show significant benefits tocloud
users and cloud providers. In future work we plan to address the
following two main points. First, evaluate other MCP architec-

ture components and improve the proxy-based load balancer per-
formance. Second, we will investigate how the concept of federated
multiple clouds can be used to reduce the resource provisioning
cost, while maintaining the Quality of Service (QoS) to customers
who use the resources.
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