
Automatic Exploration of Datacenter Performance Regimes

Peter Bodík, Rean Griffith, Charles Sutton,
Armando Fox, Michael I. Jordan, David A. Patterson

RAD Lab, EECS Department
UC Berkeley
Berkeley, CA

ABSTRACT
Horizontally scalable Internet services present an opportunity to
use automatic resource allocation strategies for system manage-
ment in the datacenter. In most of the previous work, a controller
employs a performance model of the system to make decisions
about the optimal allocation of resources. However, these mod-
els are usually trained offline or on a small-scale deployment and
will not accurately capture the performance of the controlled ap-
plication. To achieve accurate control of the web application, the
models need to be trained directly on the production system and
adapted to changes in workload and performance of the applica-
tion. In this paper we propose to train the performance model us-
ing an exploration policy that quickly collects data from different
performance regimes of the application. The goal of our approach
for managing the exploration process is to strike a balance between
not violating the performance SLAs and the need to collect suffi-
cient data to train an accurate performance model, which requires
pushing the system close to its capacity. We show that by using
our exploration policy, we can train a performance model of a Web
2.0 application in less than an hour and then immediately use the
model in a resource allocation controller.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems;
C.5.5 [Computer System Implementation]: Servers

General Terms
Experimentation, Measurement, Performance

Keywords
Automatic control, resource allocation

1. INTRODUCTION
Horizontally scalable Internet applications would appear to be

a great fit for automatic control, and indeed a growing literature
exists on applying models of application performance for resource

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACDC’09, June 19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-585-7/09/06 ...$5.00.

allocation [5, 6, 13, 14, 7, 11, 3]. Much of this work falls under the
framework of model-based control, in which first a performance
model is trained to map from the workload of the system and the
current number of servers to the expected application performance,
and then during production, the model is used to select the optimal
number of servers to meet the current workload, while meeting the
desired application performance.

However, in previous work on model-based control, performance
models are trained offline, using data from performance of the ap-
plication on a small-scale benchmark test bed, from historical per-
formance data, or from application performance under low work-
load. Offline training of performance models creates serious diffi-
culties in applying model-based control in real-world settings, for
two reasons. First, operators of data center applications report that
experiments on small-scale test beds do not reflect the capacity of
applications in production [1]. Second, the performance profile
of Internet applications changes frequently, because of changes in
how the application is used, changes in the datacenter environment,
and changes in the application itself. Both of these difficulties can
be circumvented by training the model online, that is, continually
retraining the model based on the latest workload and performance
data from the production system.

A difficulty of applying online training is the need to gather data
from different regimes of workload and system configuration while
avoiding violating the Service Level Agreements (SLAs) of the ap-
plication. Building an accurate performance model can require data
from several different regimes of application performance, for ex-
ample performance under low workload with few machines, un-
der high workload with many machines, and so on. In this paper,
we propose a solution to this data-gathering problem, namely, the
use of an exploration policy. An exploration policy is an automatic
control strategy that is specifically designed to collect a broad range
of training data for a more complex model-based control strategy,
that is, to explore different performance regimes. To minimize the
probability of violating the SLA, the exploration policy constantly
monitors the performance of the application and immediately adds
more servers if the latency exceeds the specified exploration safety
threshold. This idea of “performing experiments in the production
environment” is not as radical a departure from current practice as
it may seem: it is in fact a common practice to measure system ca-
pacity in production, by increasing load on system components in
a controlled way [1, 15].

An exploration policy must meet four requirements. First, it
must quickly explore different regimes of the application. Second,
the amount and type of data collected during exploration must be
sufficient to train an accurate performance model. Third, even dur-
ing the exploration phase, the policy must be careful not to violate
performance requirements. And finally, the exploration policy must

1

include rules for automatically switching to model-based control
once the performance model is accurate.

We have found that an exploration policy that meets these re-
quirements must satisfy the following four principles. First, the
exploration policy must push the system close to its capacity, be-
cause otherwise we cannot reliably estimate that capacity. How-
ever, as a second principle, exploration must not push the system
past its capacity, because the performance requirements for inter-
active datacenter applications are strict. Operators will not toler-
ate an automatic control system that violates performance require-
ments. The trade off between collecting data close to the system
capacity and violating the performance SLA is controlled by the
exploration safety threshold. Third, during exploration, the actions
themselves should run as quickly as possible. In our application,
we achieve this using a pool of “hot standby” machines that are
fully ready to serve requests, but are not yet provisioned. Adding
these machines to the application is much faster than requesting
and initializing new machines. This makes exploration both safer,
because the standby servers can be added quickly in an emergency,
and faster, because the exploration controller can see the effects
of its actions without a long delay. Finally, the exploration pol-
icy needs to quickly estimate an approximate capacity model of
the application to prevent entering configurations where the system
cannot handle the incoming workload. Without such a model, the
policy often removes too many servers and causes an SLA viola-
tion.

2. RELATED WORK

2.1 Offline exploration
Training of statistical performance models using exploration of

the configuration space was previously described in [9, 8, 2]. The
authors use active sampling to select system configurations to bench-
mark which leads to fast exploration of most performance regimes
of the system. The number of system parameters and their values
is often large and exhaustive benchmarking of all possible combi-
nations would take weeks or months. The goal of active sampling
is to select a small set of experiments that will provide sufficient
data to train an accurate performance model. The benchmarking of
the system is performed offline, not in a production environment;
selecting a configuration that results in high latency or low through-
put of the system thus does not impact the experience of users of
the system. In this paper we present exploration that is performed
in a production environment where using an incorrect configuration
has potentially catastrophic consequences.

2.2 Exploration in Reinforcement Learning
Reinforcement learning algorithms are designed to automatically

explore the environment, estimate a control model, and then slowly
switch to the exploitation mode where this control model is used to
achieve a certain objective without further exploration [12]. How-
ever, the standard exploration algorithms simply perform random
actions and do not consider their potentially high cost. Applying
these algorithms to our problem would certainly cause too many
SLA violations.

3. MODEL-BASED RESOURCE ALLOCA-
TION

We use the following framework for model-based control of hor-
izontally scalable Internet applications with frequently changing
performance characteristics consisting of three components. We

first train a statistical performance model to capture the relation-
ship between workload, number of servers, and the request latency.
We propose to train the model in the production environment us-
ing exploration and later frequently retrain it to adapt to gradual
changes in performance. We use performance models based on
smoothing splines or local regression [16] – established techniques
for nonlinear regression that do not require specifying the shape of
the curve in advance. The model estimates the fraction of requests
slower than the SLA threshold, given input of the form { workload,
servers } observed over a period of twenty seconds.

The performance model is then used in the optimal, model-based
controller. The proposed controller first predicts the next five min-
utes of workload using a linear regression on the most recent 15
minutes. The predicted workload is then used as input to the per-
formance model to find the smallest number of machines that can
handle the workload. Finally, the controller employs a hysteresis
strategy to avoid oscillations.

To detect abrupt changes in relationship between workload, num-
ber of machines, and performance, we use change point detection
– a technique based on statistical hypothesis testing. The change
point detection algorithm compares the current performance of the
application relative to an accurate model of the performance a few
hours ago. After detecting a change point, the controller enters the
exploration phase, quickly trains a new model, and eventually re-
turns to the optimal, model-based control.

4. EXPLORATION CONTROL POLICY
The goal of the exploration control policy is to quickly collect

enough data to train an accurate and stable performance model
while avoiding the SLA violations. The exploration policy has to
cope with an inherent trade off between the safety of the explo-
ration and the “quality” of data being collected. If the policy does
not push the system close to its capacity, it will not be able to train
an accurate performance model, while running the system above
the capacity will likely result in SLA violations.

4.1 Baseline Exploration
To quickly explore a wide range of the application behaviors, the

exploration policy sets a random request latency target between 0
and M , the exploration safety threshold, and adds or removes ma-
chines to reach that target. If the current latency is lower than the
selected latency target, the policy removes a single machine from
the application, otherwise it adds a machine. The policy sets a new
random latency target after adding or removing two machines. The
effect of such policy is that it explores both the low-latency and
high-latency regimes of the system. To quickly respond to possi-
ble future SLA violations, when latency increases above the safety
threshold, the policy immediately requests another server for the
application. The safety target thus serves two purposes: it ensures
that the policy never selects a very high latency target and is also
used to trigger a safety action in case of emergency.

To collect enough workload and performance data for a given
configuration, after removing a machine from the application, the
policy waits for D− minutes before executing another action. After
adding a machine, the policy waits for D+ minutes, which includes
the average delay of requesting and initializing a new machine.

4.2 Safety Mechanisms
While experimenting with this exploration policy, we found that

it tends to violate the performance SLA and we have thus imple-
mented two safety mechanisms. We maintain a pool of hot standby
machines that can be added to the application immediately without
waiting for new machines to boot up and we quickly estimate an ap-

2

time [hours]

%
 s

lo
w

 re
qu

es
ts

0.
00

0.
04

0.
08

0.
12

fraction > 1sec (20-sec period)
fraction > 1sec (10-minute period)
SLA threshold (5%)

time [hours]
01:00 02:00 03:00 04:00 05:00 06:00 07:00

0
50

10
0

15
0

nu
m

be
r o

f m
ac

hi
ne

s
0

2
4

6
8

10

throughput
machines

Figure 1: A typical six hour experiment with parameters M = 5% and λ = 2%. In the top graph, the thin gray line represents the fraction of
requests slower than 1 second measured every 20 seconds. The thick black line represents the fraction of slow requests over a 10-minute period that
corresponds to our SLA; a SLA violation occurs when the black line crosses the dashed horizontal line. There were a total of two SLA violations
in this experiment. The symbols in the center differentiate between exploration periods (circles on the top) and optimal control (triangles on the
bottom). During period with no symbol, the controller was waiting for the previous action to complete. In the bottom graph, the thin line shows the
throughput of the application, the thick line represents the number of running application servers. Notice that during exploration the number of
servers changes very rapidly, while during optimal control, the hysteresis smoothes out oscillations of the controller.

proximate capacity of a single machine which prevents the policy
from removing too many machines. Finally, we improve the stabil-
ity of the performance model by discarding data collected during
the transient behavior of the application after adding or removing a
server.

Machines in hot standby
Booting up a new machine and adding it to the application takes
several minutes, which makes the exploration policy very slow to
respond to sudden increases in workload. We therefore maintain
a small number of hot standby machines that are running the ap-
plication, but are not serving any requests. When the exploration
policy requests a new machine, a hot standby machine is added to
the configuration of the load balancer and starts serving application
requests within seconds. After adding a machine to the application
from the hot standby pool, the exploration policy requests a new
hot standby machine to ensure a certain capacity of the pool.

Estimating server throughput using a linear model
The baseline exploration policy often removes a server even when
the application is very close to its capacity which causes a signifi-
cant increase in request latency. To avoid this behavior, we estimate
the maximum throughput of a single machine and then derive the
minimum number of machines required for the current workload.

Let wt and nt be the workload and number of servers at time t,
respectively, and let S be the set of time intervals when the la-
tency exceeded the threshold defined in the SLA. The set T =
{wt/nt}t∈S thus represents the workload per server during time

intervals when the latency was too high. We approximate the max-
imum throughput of a single server, wmax, as the median of values
in T . At time t, the exploration policy will remove a server only if
there are more than dwt/wmaxe servers running. We could obtain a
more conservative estimate of wmax by computing a lower quantile
of values in T , such 10th or 25th. Using the minimum of T should
be avoided because this statistic is very sensitive to outliers, while
quantiles are more robust.

This throughput estimate is also used to compute the number
of machines to add as a safety action after detecting a potential
SLA violation. Assuming that a machine serving wmax requests per
second is at 100% utilization, the safety action aims to decrease
the utilization to 75%, or more formally, the safety action adds
dwt/wmax/0.75e − nt machines.

Discarding data from transients
During initial testing we observed significant spikes in latency when
adding machines to the application. We believe that the increase in
latency is due to the new machines being “cold” and thus respond-
ing slower than the remaining machines. Because the performance
model should model the steady-state performance of the applica-
tion, we discard data observed within one minute after adding or
removing a machine. If used for training, these data points could
negatively impact the accuracy of the performance model.

The duration of the these transients could be estimated either
offline by changing the number of machines under steady workload
and analyzing the spikes in latency, or online by comparing the
observed workload to the prediction of an accurate model.

3

5. SWITCHING TO OPTIMAL CONTROL
As the accuracy of the performance model increases during ex-

ploration, the controller has to decide when to switch from the
exploration policy to the optimal, model-based control. The con-
troller makes this decision at each time step by evaluating the sta-
bility of the performance model at the current workload. We first
use bootstrapping [16] to estimate the variance of the performance
model M at different values of workload w and number of servers
n and then use it to decide whether to continue exploring or switch
to optimal control.

Bootstrapping is a technique for estimating properties of a model
(such as its variance) by fitting the same model to datasets obtained
by resampling the original training dataset. The original dataset
D is used to create k resampled datasets D1, . . . , Dk; each Di is
the same size as D and contains data points sampled from D with
replacement (some data points are selected multiple times, while
others are not selected). The variance of the performance model
M for workload w and number of servers n is estimated as the
variance of predictions of the k models obtained from the respec-
tive resampled datasets at point (w, n). M is considered stable at
(w, n) if the standard deviation (square root of the variance) is less
than the model stability threshold λ. See Figure 2 for the evolution
of model stability during exploration.

We use the following rule to decide whether to explore at the cur-
rent workload wnow. Let n0 be the smallest n such that the model
is stable at (wnow, n0) and M(wnow, n0) is less than the perfor-
mance threshold specified in the SLA; in other words, we expect n0

servers to handle the current workload with good latency. However,
to ensure we can rely on predictions of the model for n0 servers, we
also check the stability of the model at points (wnow, n0) through
(wmax, n0), where wmax is the maximum workload that n0 servers
can handle according to the current model. If the model is not sta-
ble at these points, the controller remains in exploration. Otherwise
it switches to optimal control and will allocate n0 servers to the ap-
plication.

6. EVALUATION
The experiments in this section illustrate the four principles de-

scribed in the introduction. First, they show that using both a hot
standby pool of servers and the simple capacity model is necessary
for a exploration policy to avoid SLA violations and quickly train
an accurate performance model (see Section 6.1). Second, without
pushing the application close to its capacity, the exploration pol-
icy does not observe enough data in the high-latency regime of the
application and is unable to train an accurate performance model.
This situation occurs when the exploration safety threshold M is
set to a very low value. Also, setting the safety threshold too high
causes a significant number of SLA violations and would thus make
the exploration policy unacceptable for production environments
(see Section 6.2). Finally, we demonstrate the effects of the model
stability threshold λ on the accuracy of the model and the duration
of the exploration (see Section 6.3).

Experimental Setup
We evaluate the exploration policy on Amazon EC2 using Cloud-
Stone [10], a recently proposed benchmark for Web 2.0 applica-
tions. We use a 36 hour workload compressed into six hours ob-
tained from Ebates.com [4]. We assume a cloud computing en-
vironment where running a single virtual machine (VM) for ten
minutes costs $0.10. We use the local regression library locfit
in the statistical package R to estimates the fraction of requests
slower than one second given the current workload and number of

workload [req/s]

se

rv
er

s
5

10

workload [req/s]

se

rv
er

s
5

10

workload [req/s]

se

rv
er

s
5

10

0 50 100 150
workload [req/s]

se

rv
er

s
5

10

Figure 2: The stability of the performance model after 27, 31, and
64 minutes and at the end of the six hour experiment. In each plot,
a dot at workload w and number of servers n means that the perfor-
mance model is stable at (w, n); i.e. the variance is less than λ. The
thick black line represents the number of machines used during opti-
mal control. For workloads where the optimal number of machines is
not available, the controller remains in exploration.

servers. During bootstrapping, we found that using k = 10 boot-
strap samples are sufficient to estimate the stability of the perfor-
mance model. We used a hot standby pool of two machines. Before
executing another action, the baseline exploration policy waits for
D+ = 7 minutes after adding a machine and D− = 3 minutes af-
ter removing a machine. Requesting and initializing a new machine
takes approximately four minutes which are included in D+. With
hot-standby machines, both D+ and D− are set to 3 minutes.

We define two performance SLAs: at most 5% of requests should
be slower than one second during periods of ten and two minutes.
The two-minute SLA is a more stringent criterion, because it is
affected even by brief spikes in latency.

A good exploration policy would minimize the number of SLA
violations over the ten and two minute periods (SLA10 and SLA2 in
Tables 1, 2, and 3), the length of the exploration period in minutes
(explor.), and the total cost of the VMs during the experiment in
dollars (VM cost). We performed three runs for each setting of the
parameters and report the average over these three runs.

6.1 Effects of the safety mechanisms
We first evaluate the baseline exploration policy and compare

the effects of the safety mechanisms. We performed four exper-
iments; starting with the baseline exploration policy, then adding
hot standby servers, adding the simple capacity model, and finally
adding the discarding of data collected during transient behavior.
We used exploration safety threshold M = 0.05 and model stabil-
ity threshold λ = 0.02. The results are summarized in Table 1.

The baseline exploration policy performed worst, regularly vi-
olating the SLA and taking too long to converge to an accurate
model. Adding hot standby servers decreased the number of SLA
violations and the exploration time, while using the simple capac-
ity model reduced the number of SLA violations. As expected, dis-
carding data points from transients helped the model to train faster.

4

mean
type SLA10 SLA2 explor. VM cost
baseline 10.33 40.33 170.8 63.5
+ hot standby 4.33 15.00 100.6 67.6
+ capacity est. 0.50 4.00 124.6 69.2
+ discard tran. 0.33 4.33 94.5 68.6

standard deviation
type SLA10 SLA2 explor. VM cost
baseline 5.86 25.93 89.7 1.99
+ hot standby 3.21 5.00 17.5 1.05
+ capacity est. 0.58 3.21 35.5 1.86
+ discard tran. 0.82 2.07 19.3 1.03

Table 1: Comparison of the baseline and exploration policies
created by adding the safety measures. The last policy uses hot
standby machines, simple capacity estimate, and discards data
points during transients. The top table shows the mean over
the three experiments, the bottom one shows the standard de-
viation. The columns, from left to right, represent the type of
exploration algorithm, number of SLA violations when averag-
ing over ten and two minutes, duration of the exploration phase
in minutes, and total cost of the VMs.

6.2 Effects of the exploration safety threshold
To understand the effect of the exploration safety threshold M

on the behavior of the exploration policy we performed a series
of experiments with values of M ranging from 0.002 to 0.10 (see
Table 2). We used λ = 0.02.

Small values of M force the exploration policy to add too many
servers to achieve the low latency specified by the performance tar-
get and thus increase the VM cost. More importantly, the explo-
ration takes too long because the policy never observes the high-
latency regime of the application. The policy with M = 0.01 per-
formed much better, however, in one of the runs the simple capacity
model was very inaccurate because of only a single instance of la-
tency exceeding the SLA threshold. As a consequence, the policy
twice added 15 machines as a safety action when a few machines
would suffice.

Increasing the value of M allows the policy to push the applica-
tion closer to its capacity and train the performance model faster.
The number of SLA10 violations is very small, while the number
of SLA2 violations doesn’t increase much even for higher values of
M . Values of the safety threshold above the 5% SLA threshold do
not automatically mean that the policy will constantly violate the
SLA. The SLA is usually evaluated on longer time periods, while
the exploration policy can quickly respond to spikes in latency that
occur at higher values of M . We found that the SLA is significantly
violated only at M = 0.20.

6.3 Effects of the model stability threshold λ

The model stability threshold λ affects the length of the explo-
ration and the accuracy of the performance model. We performed
experiments with values of λ ranging from 0.005 to 0.5; the results
are summarized in Table 3.

Smaller values of λ pose a strict requirement on model stabil-
ity and require significantly more data points to train the model
and thus extend the exploration. Consequently, longer exploration
causes more SLA violations and higher VM cost.

As we loosen the restrictions on the stability of the performance
model, the exploration period becomes much shorter while also de-

safety thr. M SLA10 SLA2 explor. VM cost
0.002 0.00 0.33 217.8 81.4
0.005 0.00 0.50 269.2 76.3
0.01 0.67 2.67 155.7 73.9
0.03 0.00 5.00 108.1 69.2
0.05 0.33 4.33 94.5 68.6
0.07 0.00 6.00 99.5 68.3
0.10 0.00 6.33 93.6 68.3
0.20 4.00 14.00 99.1 67.8

Table 2: Comparison of exploration policies with different val-
ues of the safety threshold M (λ = 0.05).

λ SLA10 SLA2 explor. VM cost
0.005 2.00 11.67 205.1 74.0
0.02 0.33 4.33 94.5 68.6
0.05 0.25 2.75 62.5 67.1
0.10 0.33 3.67 77.2 68.1
0.20 1.00 4.67 43.2 67.3
0.50 0.67 3.00 46.7 68.2

Table 3: Comparison of exploration policies with different val-
ues of the model stability λ (M = 0.05).

creasing the number of SLA violations. Somewhat surprisingly,
even when λ – the threshold on the standard deviation of the pre-
dictions of the model – significantly exceeds the SLA threshold
of 5%, the optimal control using this model is still accurate and
doesn’t incur any additional VM costs nor does it cause more SLA
violations.

6.4 Setting the parameter values
In practice the values of the safety and model stability thresholds

could be adjusted iteratively. One would start with low values of
M = 0.005 and λ = 0.02 and then slowly increase both to shorten
the duration of the exploration period. In case of a much stricter
SLA defined over a shorter time interval, the value of the safety
threshold has to be set much lower.

6.5 Exploration at large scale
The exploration policy has two parameters that would have to be

adjusted to make it work at scale of thousands of machines. First,
the current policy adds or removes a single machine every three
minutes to reach the specified performance target. On a large scale,
such behavior would be too slow and the policy should instead add
or remove a fraction of the current servers (such as 5%). Similarly,
the size of the hot standby pool should be a fraction of the current
number of servers, such as 10 or 20%.

7. CONCLUSION
In this paper we argue that training a performance model in a pro-

duction environment is a necessary first step in automatic resource
allocation. We present a safe exploration policy that quickly ex-
plores different performance regimes of the application and causes
very few SLA violations. We show that there is a relatively wide
range of values of the safety and stability thresholds for which the
exploration policy performs well.

8. REFERENCES
[1] J. Allspaw. The Art of Capacity Planning: Scaling Web Resources.

O’Reilly Media, Inc., 2008.
[2] S. Babu, N. Borisov, S. Duan, H. Herodotou, and V. Thummala.

Automated experiment-driven management of (database) systems. In
HotOS, 2009.

5

[3] M. N. Bennani and D. A. Menasce. Resource allocation for
autonomic data centers using analytic performance models. In ICAC,
2005.

[4] P. Bodík, G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel,
G. Tolle, J. Hui, A. Fox, M. I. Jordan, and D. Patterson. Combining
visualization and statistical analysis to improve operator confidence
and efficiency for failure detection and localization. In ICAC, 2005.

[5] J. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centers. In
Symposium on Operating Systems Principles (SOSP), 2001.

[6] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang.
Power and performance management of virtualized computing
environments via lookahead control. In ICAC ’08: Proceedings of
the 2008 International Conference on Autonomic Computing, pages
3–12, Washington, DC, USA, 2008. IEEE Computer Society.

[7] X. Liu, J. Heo, L. Sha, and X. Zhu. Adaptive control of multi-tiered
web applications using queueing predictor. Network Operations and
Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages
106–114, April 2006.

[8] P. Shivam, S. Babu, and J. Chase. Active sampling for accelerated
learning of performance models. In SysML, 2006.

[9] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S. Babu.
Cutting corners: Workbench automation for server benchmarking. In
USENIX, 2008.

[10] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
S. Patil, A. Fox, and D. Patterson. Cloudstone: Multi-platform,
multi-language benchmark and measurement tools for web 2.0,
2008.

[11] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online services. In NSDI, 2005.

[12] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning). The
MIT Press, March 1998.

[13] G. Tesauro, N. Jong, R. Das, and M. Bennani. A hybrid
reinforcement learning aproach to autonomic resource allocation. In
International Conference on Autonomic Computing (ICAC), 2006.

[14] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic
provisioning of multi-tier internet applications. In ICAC, 2005.

[15] P. Vosshall. Amazon, Personal communication.
[16] L. Wasserman. All of Nonparametric Statistics (Springer Texts in

Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

6

